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ABSTRACT 

A combination of graph layouts in 3D space, interactive computer graphics, and 

virtual reality (VR) can increase the size of understandable networks for metabolic 

network visualization. Two models, the directed graph and the compound graph, were 

used to represent a metabolic network. The directed graph, or nonhierarchical 

visualization, considers the adjacency relationships. For the nonhierarchical visualization, 

the weighted GEM-3D layout was adopted to emphasize the reactions among metabolite 

nodes. The compound graph, or hierarchical visualization, explicitly takes the hierarchical 

relationships like the pathway-molecule hierarchy or the compartment-molecule hierarchy 

into consideration to improve the performance and perception. An algorithm was 

designed, which combines the hierarchical force model with the simulated annealing 

method, to efficiently generate an effective layout for the compound graph. A detail-on-

demand method improved the rendering performance and perception of the hierarchical 

visualization. The directed graph was also used to represent a sub-network composed of 

reactions of interest (ROIs), which reveal reactions involving a specific node. The fan 

layout was proposed for ROIs focusing on a metabolite node. The radial layout was 

adopted for ROIs focusing on a gene node. Graphics scenes were constructed for the 

network. The shapes and material properties of geometric objects, such as colors, 

transparencies, and textures, can encode biological properties, such as node names, 

reaction edge types, etc. Graphics animations like color morphing, shape morphing, and 

edge vibration were used to superimpose gene expression profiling data to the network. 

Interactions for an effective visualization were defined and implemented using VR 

interfaces. A pilot usability study and some qualitative comparisons were conducted to 

show potential advantages of stereoscopic VR for metabolic network visualization. 
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CHAPTER 1. INTRODUCTION 

1.1 Motivation 

Metabolic networks are composed of two interwoven processes, metabolism and 

regulation. Within all organisms, chemical reactions and energy transformations occur 

that are essential to nutrition, growth and repair of cells, and conversion of energy into 

usable forms. The sum of all the biochemical activities of the organism is its metabolism 

[Solomon et al. 1999]. The essential purpose of metabolism is the flow of mass and 

energy. Regulating mechanisms precisely control the metabolic flows. Since metabolism 

is fundamental to life processes, understanding metabolic networks and profiling data is 

of utmost importance. A better understanding of metabolism may help to predict the 

effects of a given drug on human metabolism, the consequences of changes in a single 

gene on the composition of seed, or the effect of a given mutation in a pre-cancerous cell. 

A metabolic network can be expressed as a series of pathways. A pathway is composed 

of a series of interconnected chemical reactions among various molecules. Each reaction 

can be further classified as a metabolic reaction or a regulatory reaction. 

These networks are complex and difficult to interpret. Visualization can aid the 

understanding of complex metabolic networks, gene expression profiling data, and their 

relationships. The human genome contains at least 28,000 genes [Lander and Linton 

2001]. Genomes of this size create very complex metabolic networks, exceeding people's 

ability to understand text descriptions of the networks. An effective visualization can 

reveal global structures and local details that are not otherwise apparent. 

The motivation of this research is to exploit 3D space, computer graphics, and VR 

for large scale metabolic network visualization. Metabolic network visualization belongs 

to the field of graph drawing in the area of information visualization. Information 
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visualization presents information that consists of entities and the relationships among 

them [Chen 2004]. In a graph, entities are nodes; relationships are edges. The process of 

graph drawing includes three stages [Kamada 1989]: modeling, layout, and rendering. In 

the modeling stage, a graph model is extracted from the original data. The layout stage 

assigns positions to nodes and edges in two-dimensional (2D) or three-dimensional (3D) 

space. The rendering stage produces an image of the graph. Most current research on 

metabolic network visualization exploits 2D space in the stage of layout and produce 

flowchart-like displays in the stage of rendering [Karp and Paley 1994; Becker and Rojas 

2001; Dickerson et al. 2001; Schreiber 2002; Schreiber 2003; Shannon et al. 2003; 

Toyoda et al. 2003]. Current graph drawing methods and current metabolic network 

visualization systems and are described in Section 2.1 and Section 2.2 respectively. 

Computer graphics uses computers to generate visual images for a real world or a 

synthetic world. It includes a scene, the set of geometric representations for the real world 

or the synthetic world and the rendering of the scene. The resultant images are usually 

displayed in 2D media, such as monoscopic computer monitors or paper. Virtual reality 

(VR) extends the display into the third dimension by introducing stereoscopic display. 

VR also uses advanced devices, such as head and wand tracking devices and various 

input devices, to enable richer interactions than convention computers. Computer 

graphics and VR are briefly introduced in Section 2.4. 

The potential advantages of 3D space and VR for general graph visualization have 

been noted by some researchers. Ware's studies [Ware et al. 1993; Ware and Franck 1994; 

Ware and Franck 1996] compared 3D space with 2D space for graph visualization. 

Different configurations were tested for a path tracking task, including the 2D parallel 

display, the 2D perspective display, the 2D perspective display with the head tracking, the 

2D perspective display with user interactions to translate and rotate the graph, the 
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stereoscopic display, the stereoscopic display with the head tracking, and the stereoscopic 

display with user interactions to translate and rotate the graph. The response times were 

relatively uniform across the configurations. The main difference was found in error rates. 

The last two configurations had the lowest error rate. The 2D display configuration had 

the highest error rate. Ware found that for a given error rate, the size of a graph viewed in 

stereoscopic VR with the manipulation of the viewpoint can be three times as large as that 

in a 2D plane. Using stereo alone appears to increase the graph size by a factor of 1.6 and 

using the head tracking alone appears to increase the graph size by a factor of 2.2. 3D 

space and VR have been adopted for software visualization [Parker et al. 1998; Maletic et 

al. 2001; Maletic et al. 2001] and statistical data visualization[Nelson et al. 1999]. 

This research is to exploit 3D space, computer graphics, and VR for large scale 

metabolic network visualization. It is a significant challenge to convey large amounts of 

information in metabolic networks. Layouts of metabolic networks in 3D space offer 

various benefits. The extra dimension gives greater flexibility for placing nodes and edges. 

Computer graphics improves the display of the network by generating and rendering 

geometric representations for nodes and edges. Computer graphics rendering can be an 

interactive process by enabling the user to move the viewpoint and change the shape and 

material properties (such as color, transparency, and texture) of geometric representations. 

VR technologies enable the user's interaction to change the viewpoint position and many 

other interactions such as selecting nodes. VR also features stereoscopic displays. 

Layouts in 3D space, material properties in computer graphics, and virtual reality 

environment will help people to explore high dimensional networks. This thesis proposes 

an interactive visualization of large scale metabolic networks in VR. The data flowchart 

of the visualization is in Figure 1.1. 
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Figure 1.1 Data flowchart of interactive visualization of metabolic networks 

1.2 Major contributions of this dissertation 

This dissertation presents five major contributions in metabolic network 

visualization. I here: 

• Proposed and implemented a layout algorithm for reactions of interest 

focusing on a metabolite node (Section 5.1). 

• Adapted the radial layout highlighting reactions of interest focusing on a gene 

node (Section 5.2). 

• Designed a layout algorithm taking both hierarchical relationships and 

adjacency relationships in the metabolic network into consideration (Section 

4.3). 
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• Developed detail-on-demand interactions, which exploits the hierarchical 

relationships, to improve the performance and the perception of the metabolic 

network visualization (Section 4.2). 

• Conducted a pilot usability study testing the effectiveness of virtual reality for 

the visualization of large scale metabolic networks (Section 7.2). 

1.3 Organization of this thesis 

Chapter 2 introduces the basic concepts of metabolic networks, gene expression 

profiling data, existing metabolic networks visualization systems, graph drawing 

algorithms, computer graphics, and virtual reality. Chapter 3 discusses how to achieve a 

global view of a metabolic network and gene expression profiling data, including the 

visual representations for both of them, a layout algorithm for the network, and the 

combination of them in virtual reality. Chapter 4 introduces the compound graph model 

for metabolic networks containing adjacency relationships and hierarchical relationships, 

a layout algorithm for the compound model, and a detail-on-demand display method. 

Chapter 5 proposes the concept of reactions of interest and the display methods, including 

special layouts and layout animation. Chapter 6 presents some methods to integrate the 

metabolic network with gene expression profiling data. Chapter 7 integrates these pieces 

into MetNetVR, a cross-platform system for metabolic network visualization, and 

describes a usability test with the hypothesis that the combination of 3D space, computer 

graphics rendering, and VR, are helpful to visualize large scale metabolic networks. A 

qualitative comparison between 3D space and 2D space for metabolic network 

visualization for metabolic network visualization and a qualitative comparison between 

the hierarchical visualization and the nonhierarchical visualization are also presented in 

Chapter 7. Chapter 8 gives some conclusions and lists future work. 
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CHAPTER 2. BACKGROUND 

Pathways are conventionally drawn as diagrams. Figure 2.1 shows the diagram of 

a pathway depicting the citric acid cycle from a standard text book. Today, there are 

many databases of static pathway diagrams published online at sites such as KEGG 

[Kanehisa and Goto 2000] and TAIR (http://www.arabidopsis.org/tools/aracvcA. 

n 

cartxwyl groups. CoA is free to combine 
another 2-carbon group and repeal the p 

decarboxylation and dehyd rage nation 
to form the 4-carbon compound ; 
succinyi coenzyme A. Thte reaction is J 
catalyzed by a muKlenzyme complex 
similar to the complex that catalyzes ; 
I he conversion of pyruvate to acetyl « 

Figure 2.1 Citric acid cycle [Solomon et al. 1999] 

Static visualization of metabolic networks suffers from disadvantages such as the 

high cost of manual drawing, the difficulty of modifying the network, and the absence of 

interactions. Research efforts are now focusing on visualizing metabolic networks 

dynamically. Dynamic visualization is the automatic generation of diagrams that 

represent user-selected portions of the entire network at the time they are needed. 

http://www.arabidopsis.org/tools/aracvcA
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Dynamic visualization of metabolic networks requires a mathematical model to 

describe metabolic networks. A metabolic network can be modeled as a directed graph, G 

(N, E), where N is the set of nodes representing various molecule nodes in the network; 

and E is the set of reaction edges connecting nodes. In this research, nodes in the 

metabolic network can be classified into metabolite nodes, gene nodes, RNA nodes, 

polypeptide nodes, protein complex nodes, and reaction nodes. A reaction node is 

introduced to convert a hyper reaction edge in the network to multiple edges in the 

directed graph. For example, reaction 8 in Figure 2.1 is a reaction generating oxaloacetate 

and NADH from malate and NAD. The relationship between reactants and products in the 

reaction is a hyper edge, which has multiple tails or multiple heads. The hyper edge is 

converted to multiple edges in the directed graph model by introducing a reaction node. 

After the conversion, the relationship is represented as the following reaction edges, 

malate->reaction node, NAD->reaction node, reaction node-> oxaloacetate, and reaction 

node->NADH. Reaction edges can be classified into enzymatic edges, catalysis edges, 

assembly edges, transcription edges, translation edges, negative regulation edges, and 

positive regulation edges [Wurtele et al. 2003]. 

2.1 Graph layouts 

Current metabolic network visualization methods belong to the field of graph 

drawing. Graph layout problem is one of the most important issues in graph drawing. 

Graph layout algorithms are to automatically decide node placements and edge routings 

in graph visualization. 

2.1.1 Conventions and rules for graph layouts 

It is very difficult to accurately define a 'good' graph layout. Sugiyama 

[Sugiyama 2002] lists the conventions and rules for good graph layouts, which reflect the 
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characteristics of a graph. Conventions are constraints that must be fulfilled. Rules are 

optimization criteria. Conventions are rules are listed in Table 2-1, 2-2. and 2-3. 

There are dependencies and competitions between conventions and rules. 

Although different applications have individual priorities concerning convention and 

rules, Sugiyama gives some general priority relationships, i.e., conventions have higher 

priority than rules; placement conventions have higher priority than routing conventions; 

semantic rules has higher priority than structural rules [Sugiyama 2002]. 

Table 2.1 Placement conventions for nodes [Sugiyama 2002] 

Node Placement Conventions Coordinate System 
Free placement 

Parallel line placement 

Concentric circle placement 

© 
Radial line placement 

© 
Orthogonal grid placement Orthogonal grid placement Orthogonal grid placement Orthogonal grid placement 

On the interaction of a polar grid 

m 
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Table 2.2 Routing conventions for edges [Sugiyama 2002] 

Type Routing Conventions 
Straight edge routing 

Line Type Poly-line routing 
Curve Routing 

Relationship with Routing is independent of coordinate 
system axes 

coordinate system Routing is parallel or perpendicular to 
coordinate system axes 

Table 2.3 Graph drawing rules [Sugiyama 2002] 

Type Rules 

Semantic Rules 
(Rules derived from 
the meaning of nodes 
or edges) 

1. Place specified nodes on a straight line 

Semantic Rules 
(Rules derived from 
the meaning of nodes 
or edges) 

2. Place specified nodes on a curve 
Semantic Rules 
(Rules derived from 
the meaning of nodes 
or edges) 

3. Draw nodes with specified sizes Semantic Rules 
(Rules derived from 
the meaning of nodes 
or edges) 

4. Place specified nodes at the boundary of the layout 
Semantic Rules 
(Rules derived from 
the meaning of nodes 
or edges) 

5. Place specified nodes nearly 

Semantic Rules 
(Rules derived from 
the meaning of nodes 
or edges) 6. Place specified node near the center 

Semantic Rules 
(Rules derived from 
the meaning of nodes 
or edges) 

7. Specify the upper limit to the number of edge crossings 

Semantic Rules 
(Rules derived from 
the meaning of nodes 
or edges) 

8. Specify the upper limit to the number of edge bends 

Semantic Rules 
(Rules derived from 
the meaning of nodes 
or edges) 

9. Specify the upper limit to the lengths of edges 

Structural Rules 
(Rules concerned with 
the graph-theoretic 
features of a graph) 

1. Central placement of high degree nodes 

Structural Rules 
(Rules concerned with 
the graph-theoretic 
features of a graph) 

2. Identical layout of isomorphic sub-graphs 

Structural Rules 
(Rules concerned with 
the graph-theoretic 
features of a graph) 

3. Hierarchical structure is shown vertically or horizontally 

Structural Rules 
(Rules concerned with 
the graph-theoretic 
features of a graph) 

4. Minimizing edge crossings 

Structural Rules 
(Rules concerned with 
the graph-theoretic 
features of a graph) 

5. Balance of the length and the breath of the layout 
Structural Rules 
(Rules concerned with 
the graph-theoretic 
features of a graph) 

6. Symmetry is clearly shown Structural Rules 
(Rules concerned with 
the graph-theoretic 
features of a graph) 

7. Minimize edge bends 
Structural Rules 
(Rules concerned with 
the graph-theoretic 
features of a graph) 

8. Draw faces as convex polygons 

Structural Rules 
(Rules concerned with 
the graph-theoretic 
features of a graph) 9. Place children symmetrically 

Structural Rules 
(Rules concerned with 
the graph-theoretic 
features of a graph) 

10. Avoid crossings among outlines 

Structural Rules 
(Rules concerned with 
the graph-theoretic 
features of a graph) 

11. The density of the placement and the routing is uniform 

Structural Rules 
(Rules concerned with 
the graph-theoretic 
features of a graph) 

12. Minimize drawing area 

Structural Rules 
(Rules concerned with 
the graph-theoretic 
features of a graph) 

13. Minimize the total edge length 

Structural Rules 
(Rules concerned with 
the graph-theoretic 
features of a graph) 

14. Minimize the difference in node sizes 

Structural Rules 
(Rules concerned with 
the graph-theoretic 
features of a graph) 

15. Minimize the average length of edges 

Structural Rules 
(Rules concerned with 
the graph-theoretic 
features of a graph) 

16. Minimize the difference between the length of node contours 
and the length of edges 

Structural Rules 
(Rules concerned with 
the graph-theoretic 
features of a graph) 

17. Minimize the differences in edge lengths 

Structural Rules 
(Rules concerned with 
the graph-theoretic 
features of a graph) 

18. Minimize the length of the longest edge 

Structural Rules 
(Rules concerned with 
the graph-theoretic 
features of a graph) 

19. Nodes on the boundary are placed with uniform density 
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2.1.2 Graph layout algorithms 

Layout algorithms for directed graphs can be grouped into three categories: 

physical based layouts, layered layouts, and orthogonal layouts. Physical based methods 

draw a formal analogy between the layout problem and the behavior of some idealized 

physical systems. The key features are a randomized initial embedding, a force model or 

an energy model, and an algorithm searches for an equilibrium state where the total force 

on each node is zero or a state with minimum total energy. Since force is the negative 

gradient of energy, the equilibrium state in the force model corresponds to the state of 

minimum total energy in the energy model. Figure 2.2 shows the analogy between a 

spring network and a spring force directed layout. Physical based methods are 

comparatively easy to implement, adaptable to different drawing criteria and give 

satisfactory results for many applications. The spring force directed layout [Eades 1984] 

is the first one of physical based layouts. Various heuristics [Kamada and S. 1989; 

Fruchtermann and Reingold 1991; Frick et al. 1994; Tunkelang 1994; Davidson and 

Harel 1996] are later presented to accelerate the convergence toward the equilibrium state. 

Although the physical based methods were presented for 2D layouts, they don't have any 

limitation on dimensions. It is very naturally to extend them into 3D [Bruss and Frick 

1995; Monien et al. 1995]. 

Figure 2.2 Spring force directed layout 

Layered layouts partition nodes into layers and order the nodes within each layer 

so that the number of edge crossings is minimized. The first layered layout method was 
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introduced in [Sugiyama et al. 1981]. It is thus called Sugiyama method or STT method. 

Variations of STT methods have been proposed [Rowe et al. 1987; Sander 1995]. Ostry 

[Ostry 1996] extended the layering methods into 3D space. 

Figure 2.3 Layered layout. Green dots represent virtual nodes added for edges crossing 

An orthogonal layout [Batini et al. 1984; Tamassia et al. 1988] places all nodes at 

the intersections of the orthogonal grid. The edges are routed parallel to, or perpendicular 

to the grid lines. Edge routes are allowed to contain bends, but are not allowed to cross or 

to overlap. A survey of 3D orthogonal layout algorithms [Landgraf 2001] points out that 

existing 3D orthogonal drawing methods are less applicable in practice compared with 

other two groups of methods. When applied to large graph, they only produce satisfactory 

drawing for special applications like VLSI design. 

multiple layers. 

T 

Figure 2.4 Orthogonal layout 
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Munzner [Munzner 2000] compared the scalability of general purpose graph 

drawing systems using three basic layout algorithms. More than one-half of them can 

only handle less than one hundred nodes. Only the Gem-3D layout [Bruss and Frick 1995] 

and the dot layout [Gansner et al. 1993] can handle hundreds or even a thousand nodes. 

The former belongs to physical based layouts. The latter is based on the STT method. 

2.2 Existing metabolic network visualization systems 

2.2.1 2D visualization of metabolic networks 

Many researchers have been applying two-dimensional (2D) graph layout 

algorithms for metabolic network visualization. Paley [Karp and Paley 1994] uses the 

'divide and conquer' method. It extracts the longest cycle from the graph. The rest of the 

graph is grouped into several strongly connected components, each of which is 

substituted for by a temporary node. It then uses the basic snake layout, tree layout and 

circular layout to locate all temporary nodes and all cycle nodes. Finally, each temporary 

node stretches to the strongly connected component and is recursively laid out using the 

same method. Becker [Becker and Rojas 2001] improves this method by introducing a 

spring embedding algorithm into the more complex layout problems where basic snake 

layout, tree layout and circular layout cannot fit. Schreiber [Schreiber 2002] uses the 

well-known Sugiyama method for hierarchical drawing [Sugiyama et al. 1981] and adds 

application-specific constraints on the layer assignment of a vertex and its position within 

the layer. Schreiber[Schreiber 2003] extends his previous work in order to enable the 

comparison of similar pathways across species by drawing similar pathways side by side, 

and placing vertices representing same substances in similar pathways on the same 

horizontal layer. Toyoda [Toyoda et al. 2003] applies the fisheye view method [Sarkar 

and Brown 1992] to increase the size of understandable networks. Instead of using a 

single layout method, FCModeler [Dickerson et al. 2003] integrates rank and cluster, dot 
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(http://www.research.att.com/sw/tools/graphvizA and Graph-Embedder [Frick et al. 1994] 

layouts in one package for dynamic display and fuzzy modeling of regulatory and 

metabolic networks ('http://clue.eng.iastate.edu/~iulied/research/fcmodeler/index.html'). 

Membrane Rc< ep/ur for (JA an 

PKL SHI T707 

Meristcm Carpal Margin 

trichomi' initiation GA MYB 

Figure 2.5 A snapshot of FCModeler 

2.2.2 3D visualization of metabolic networks 

Researchers have started to use 3D graph layout algorithms to visualization 

metabolic networks in 3D space. One method, developed by Brandes [Brandes et al. 2003; 

Brandes et al. 2004], exploits 3D space to compare similar pathways across species. Each 

pathway across species is drawn in one 'stratum'. In the third dimension, all strata are 

ordered so that the most analogous pathways are adjacent. The pathway in each stratum is 

drawn using the layered method (dot from 

http://www.research.att.com/sw/tools/graphvizA to minimize edge crossings. The authors 

call their method 'visualizing related metabolic networks in two and a half dimensions'. 

The system uses the 3D rotation or the stereoscopic display to enhance the depth 

perception (Figure 2.6). An advanced interaction is available to select and display a cut 

http://clue.eng.iastate.edu/~iulied/research/fcmodeler/index.html'
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place along the third dimension to get detailed information about a pathway (the right 

snapshot in Figure 2.6). The usage of 3D space here is specific (that is why it is called 

two and a half dimensions); can not be generalized. 

Figure 2.6 Visualizing related metabolic pathways in two and a half dimensions [Brandes 

et al. 2003; Brandes et al. 2004]. 

The VRML Metabolic Network Visualizer [Rojdestvenski and Cottam 2002; 

Rojdestvenski 2003] translates the XML file that represents the metabolic network into a 

Virtual Reality Modeling Language (VRML) file so that users can browse the network 

on-line. A spring embedding algorithm is used to calculate the layout of the graph. The 

interactions are enabled by the VRML browser. The scalability of VRML Metabolic 

Network Visualizer isn't discussed in the paper. On its website 

('http://www.patronov.net/sciencevr/innv/screenshots.html'). users can select a single 

pathway to visualize. 

http://www.patronov.net/sciencevr/innv/screenshots.html'
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Figure 2.7 A snapshot of VRML Metabolic Network Visualizer 

MetNetVR combines graph layouts in 3D space, computer graphics, and VR 

technologies for interactive visualization of high dimensional metabolic networks and 

gene expression profiling data [Dickerson et al. 2003; Yang et al. 2005; Yang et al. 2006]. 

2.3 Metabolic networks and large-scale profiling experimental data 

Systems biology is an academic field that seeks to integrate different levels of 

information to understand how biological systems function. System biology includes 

genomics, transcriptomics, proteomics and metabolomics. Genomics is the study of an 

organism's genome and gene functions. Transcriptomics data depicts the level of the gene 

transcripts, often using techniques capable of sampling tens of thousands of different 

mRNA molecules at a time (e.g., DNA microarrays). Proteomics is the large-scale study 

of proteins, particularly obtaining data on the proteins present in a biological sample 

[Oliver et al. 2002]. Metabolomics defines the concentration of metabolites and identifies 

the biochemical mechanisms that regulate the flux through metabolic networks. 

The integration of the data from all sub-fields is very important to understand 

biological systems. Some sub-fields are relatively more mature than others. This research 

specially addresses the integration of metabolic networks and the transcriptomics data. 

However, the tools presented here will also apply to other data. 
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An organism constantly responds to external and internal stimuli by altering the 

flux though its metabolic networks. Levels about this flux can be revealed by multi

dimensional genome-wide transcriptomics data, sometimes called gene expression 

profiling data or microrray data, which provide a rough measure of the cellular 

accumulation of different messenger RNAs. Using recent gene probe tools such as 

Asymetrix's Genechip® has made available large scale transcriptomics data for different 

species. These tools are semiconductor devices that contain hundreds of thousands of tiny 

segments designed to reach with a particular transcript. Figure 2.8 shows a color map of a 

microarray where different colors indicate relative expression of different genes 

("http://science.nasa.gov/headlines/v20Q4/images/radmicrobe/niicroarrav.ipg'). 

Figure 2.8 Different colors indicate relative expression levels of different genes. 

TreeView (http://rana.lbl.gov/EisenSoftware.htm) is one of the most commonly 

used methods for visualizing transcriptomics data [Eisen et al. 1998]. Different colors 

indicate relative expression levels of different genes. The genes are clustered in the X axis. 

The change of gene expression levels along the time is displayed along the Y axis (Figure 

2.9). 

http://science.nasa.gov/headlines/v20Q4/images/radmicrobe/niicroarrav.ipg'
http://rana.lbl.gov/EisenSoftware.htm
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H  o n »  > 

Figure 2.9 Treeview of microarry data [Eisen et al. 1998] 

2.4 3D computer graphies and virtual reality 

The final stage of graph drawing is rendering, which produces an image of the 

graph. Most current research on metabolic network visualization systems only produce 

flowchart-like displays in this stage. This research exploits 3D computer graphics and 

virtual reality to enhance the visualization. 

2.4.1 Rendering pipeline in computer graphics 

The primary objective of 3D computer graphics is to generate realistic images of a 

real world or a synthetic world. Figure 2.10 lists the rendering pipeline in computer 

graphics [Angel 2000]. In a computer graphics application, a scene includes all the 

geometric representations for objects to visualize. The scene is composite of a 

combination of various primitives and transformations. Geometries primitives in 

computer graphics include points, lines and polygons. Primitives are composites of a 

number of vertices with position, orientation, and material properties. Primitives are 

initially in the object space. Each object has its own object space where it is constructed. 

The modeling transformation assigns the placement of an object in the world space. Each 

object has its own modeling transformation. There is only one world space. Rendering a 

scene is analogous to taking a photograph of the scene, and modeling transformations are 
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analogous to arranging objects in the scene. After the modeling transformations, the 

primitives are in the world space. The viewing transformation defines the position and the 

orientation of the viewpoint. It is analogous to setting up the tripod and pointing the 

camera at the scene. After the viewing transformation, primitives are in the eye space, 

where the origin is the viewpoint position (eye position). Next, the projection 

transformation is applied. The projection transformation defines a viewing volume. The 

parts of the scene located within the viewing volume will be visible in the image. The 

other parts are clipped. After the projection transformation, primitives are the clip space 

where the clipping happens. The projection transformation is analogous to choosing a 

camera lens or adjusting the zoom. Viewport Transformation controls the size of the 

image. It is analogous to determining the size of the photograph. Rasterization converts 

primitives into pixels in the image. 

Two kinds of projections are typically used in computer graphics, orthographic 

parallel and perspective. Under an orthographic parallel projection, the viewpoint is 

infinitely far from the scene in the world space. Parallel lines in the scene are projected to 

parallel lines in the projection plane. Under a perspective projection, the viewpoint is at a 

finite point in the world space. Parallel lines in the scene are foreshortened to produce a 

vanishing point in the projection plane. The orthographic parallel projection is used in the 

applications where the image needs to reflect the measurements of objects such as 

blueprint plans. The perspective projection makes objects that are farther way appears 

smaller, generating realistic images. Stereoscopic rendering uses the perspective 

projection. 
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Primitives in Object Space 

Primitives in World Space 

Primitives in Eye Space 

Primitives in Window Space 

Image 

Rasteriztion 

Viewing 
Transformation 

Modeling 
Transformations 

Projection Transformation, 
Viewing Volume Clipping, and 
Viewport Transformation 

Figure 2.10 Rendering pipeline of computer graphics[Shreiner et al. 2005] 

2.4.2 Lighting model and material properties 

Besides the transformations discussed above, lighting model and texture mapping 

are two important issues that affect the image. The Phong lighting model is widely used 

in computer graphics. It calculates the color of each vertex in each primitive as the 

combination of four elements, i.e. diffuse color (CJ), specular color (C'$), ambient color 

(C0) and emissive color Ce. They are defined as following, 

• Cd = MdLjsin(a) 

• Cs = M,Lvcosn(P) 

• Ca MtiLo 

• Ce = Me 
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where M is the color of the vertex and L is the color of a light source. The meanings of a 

and (3 are illustrated in Figure 2.11, where N is the normal vector of vertex P. L is the 

direction vector of the light source; R is the reflection vector of L along N ; V is the 

viewing direction; a is the angle between N and L ; and p is the angle between R and V . 

Color multiplication and addition are component-wise. 

i k 

P 

Figure 2.11 Phong lighting model 

Multiple light sources are allowed in computer graphics. Diffuse component, 

specular component, and ambient component of the final color of the vertex are the sums 

of all light sources. The emissive component is only dependent on vertex itself. 

Color is one of the most important material properties that affect the appearance 

of the image. The other two are the texture map and transparency. Texture mapping 

allows an image (texture) glued on the surface of a polygon. Texture images can be either 

preloaded or generated on the fly. Texture mapping increases the developer's flexibility 

to control the appearance of objects in the image. The transparency property makes the 

translucent effect possible. An object behind another object whose transparency is zero is 

totally blocked. An object behind another object whose transparency is larger than zero 

still contributes to the image. 
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2.4.3 Virtual Reality 

In traditional computer graphics, rendering is basically the projection of a 3D 

scene into a 2D image. The absence of depth information causes ambiguities in 

interpretation. Computer graphics has some techniques to remedy this problem, such as 

the user of the perspective projection, hidden-surface removal, atmospheric effects, and 

shadowing. While all of these techniques add monocular depth cues to the image, they 

still provide limited information. VR provides two additional techniques, binocular 

disparity and motion parallax, to add depth information. Binocular disparity is the 

difference in images projected on the left and right eyes in the viewing of a 3D Scene. 

Binocular disparity is modeled in computer graphics with eyes considered as two off-axis 

centers of perspective projection. Binocular disparity is enabled by stereoscopic displays 

and liquid crystal shutter glasses or polarizing glasses in VR. Motion parallax provides 

different views of a scene in responds to the movement of the viewpoint with the fixed 

scene placement or the movement of the scene with the fixed viewpoint position. It can be 

enabled by head tracking devices and input devices in VR. 

The origin of VR traces back to the Head Mounted Display (HMD) proposed by 

Sutherland[Sutherland 1968]. Some VR platforms cross a very wide range, from fully 

immersive and room size CAVEs[Cruz-Neira et al. 1993], to HMD, to wall size 

projection screens, and to desktops with stereoscopic displays. VR also features 3D input 

devices like wands, space balls, and data gloves. 
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CHAPTER 3. GLOBAL VIEW OF METABOLIC NETWORKS 

AND GENE EXPRESSION PROFILING DATA 

The display of an entire network gives users a good understanding of the network 

structure and serves as the starting point of the exploration. Given the graph model of a 

network, visual representation for nodes and edges, layout calculation, and rendering are 

needed to get an image of the network. Section 3.1 describes the visual representation for 

metabolic networks. Section 3.2 presents a modified GEM-3D layout algorithm that takes 

the biological knowledge into consideration. Section 3.3 describes the visual 

representation for gene expression profiling data. Section 3.4 introduces the rendering of 

scenes for both metabolic networks and gene expression profiling data in virtual reality. 

3.1 Visual representation for networks 

31 SimWlndowl _ • X 

Figure 3.1 Visual representation of nodes and edges 

Computer graphics rendering draws geometric objects with different shapes and 

material properties, such as color, texture maps, and transparency. Shapes and material 

properties are helpful to reveal useful information, such as molecule type, molecule 

names, and reaction edge directions in the visualization of high dimensional metabolic 
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networks. Metabolite nodes, gene nodes, RNA nodes, polypeptide nodes, and protein 

complex nodes are represented as labels indicating theirs names. A label has a white and 

opaque foreground as name texts and a translucent and colorful background. The 

background is used to reduce the confusion of letters from different labels visually 

overlapping. The translucent background is designed to avoid the visual blocking of the 

scene behind the label[Irani and Iturriaga 2002]. The labels are implemented by applying 

the texture mapping technique to a rectangle. Reaction nodes are represented as small 

spheres. It is not necessary to display names for reaction nodes since they are introduced 

to convert a hyper reaction edge in the network to multiple edges in the directed graph. 

Different types of nodes are assigned different colors. An edge is represented as a cone 

whose button indicates the edge tail and whose top indicates the edge head. Different 

edge types are assigned different colors. 

Usually metabolic networks contain many nodes and edges. The scene 

representing the network contains many geometric primitives (points, lines, and polygons) 

composing the nodes and edges. Rendering is a computation-consuming task. To achieve 

an interactive frame rate, a technique in computer graphics called level of detail is used to 

reduce the number of the displayed primitives in some frames. The geometric objects 

(spheres and cones) representing nodes and edges have multiple levels of detail. Objects 

which are far away from the viewpoint are drawn using simplified models; only when an 

object is close enough to the viewer for all the details to be visible should a full, complex 

model be drawn. For example, a sphere is approximated using a polyhedron. An 

icositetrahedron is more detailed and contains more polygons than a tetrahedron. 

Two more techniques in computer graphics are used to increase the label 

readability and the rendering quality in the network visualization. Labels have the highest 

readability when they are perpendicular to the viewing direction. Navigation through the 
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network, i.e., moving the viewpoint or moving the entire network, breaks this relationship. 

The billboarding technique is used to solve the problem. Billboarding was originally 

designed to simplify the rendering of a geometrically complex object, such as a tree, by 

drawing a polygon in the shape a tree, applying a texture map of foliage, and rotating the 

polygon around the viewing direction. It is much faster than creating the tree out of 

polygons. Billboarding is applied to the rectangles representing node labels to make them 

always perpendicular to the viewing direction in the navigation. The other technique, 

mipmapping[Williams 1983], is applied on the texture maps for the node labels. In the 

network navigation, as a label moves farther from the viewpoint, the texture map must 

decrease in size along with the size of the perspective projected label. Otherwise, visually 

disturbing artifacts, such as shimmering, flashing, and scintillation will be introduced. 

Mipmaps are a series of prefiltered texture maps of decreased resolutions. The 

mipmapping technique automatically determines which texture map to used based on the 

size of the rectangle (label) being mapped. 

The visual representation is suitable to select an individual node or edge in the 

network. A technique in computer graphics called ray casting is used for selection. A 

virtual ray is sent into the scene and intersects geometric primitives of some nodes or 

edges. The node or edge object first hit is the selected node or edge. 

3.2 Weighted GEM-3D layout 

The 3D Graph-Embedder (GEM-3D) algorithm [Bruss and Frick 1995] belongs to 

the class of physical based methods (Section 2.3.2). It is a spring-embedder approach, in 

which each edge acts as a spring and exerts a repulsive or attractive force upon the two 

nodes attached to it, dependent on the distance between them. The spring system 

converges to an equilibrium state with minimum energy. The computation of the 

repulsive force between any two nodes (p. and u) is according to the equation of A/ | A | x 
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L, where A is the vector from the current position of (i to the current position of u, | A | is 

the length of the vector, and L is the desired edge length. The computation of the 

attractive force of edge (|i, u) is according to the equation of A * | A | /( Lx<D(u) ), where 

<D(u) is a function that grows with the degree of v. The GEM-3D method adds a 

gravitational force and several heuristics to speed up the convergence. It is one of the two 

methods that can handle hundreds or even a thousand nodes (The other one is the dot 

layout in 2D). It is adopted in this research to accommodate large scale metabolic 

networks. 

The weighted GEM-3D layout modified the GEM-3D layout by taking the 

reaction edge type into consideration. The GEM-3D layout follows the drawing rule of 

edge length uniformity (Structural Rules 18 in Table 2-3). However, biologists prefer that 

enzymatic edges (from metabolite nodes to reaction nodes, or from reaction nodes to 

metabolite nodes) are longer than other types of edges to emphasize the relationships 

among metabolite nodes. The algorithm is modified by adding weight factors to the 

attractive forces of edges, 

Ax | A |2 + ( E2 x w * <D(u) ) 

where w > 1 for enzymatic edges and w = 1 for other edges. Figure 3.2(a) shows that 

enzymatic edges are longer than other edges in the final layout. 
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(a) A weighted GEM-3D layout. The weighting factors of other types of edges larger than 

enzymatic edges (in yellow) in the calculation of attractive forces of edges. Node labels 

are intentionally turned off to give a clear view of the layout. The green gadget is a 

simulated wand interface in VR (Section 3.4) 

(b) A standard GEM-3D layout 

Figure 3.2 A comparison between the weighted GEM-3D layout and the GEM-3D layout. 
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3.3 Visual representation for gene expression profiling data 

Gene expression profiling data are represented as 3D plots as shown in Figure 

3.3(a)[Yang et al. 2005]. Each sphere represents an expression level of a given gene as 

reflected by the accumulation of its corresponding RNA. Values are indicated by both 

color and height. The cylinder connecting two spheres shows the change in expression 

values. The series of spheres connected by cylinders form a connected line in 3D, 

showing the expression levels of a gene under different conditions (the plots on the right 

side in Figure 3.3). The consistency between color and height are implemented using the 

texture mapping technique. The color scale in Figure 3.3(b) is used as the texture map. 

The leftmost color in the scale indicates the lowest expression level of all genes under all 

conditions. The rightmost color indicates the highest expression level. A label is available 

for each connected line, indicating gene names and their availability in the currently 

displayed metabolic network. A label is also available for each expression level if the 

gene is selected (using the ray casting technique), indicating the corresponding condition. 

Labels are implemented the same as the labels in metabolic networks. 

There are about 800 genes whose profiling data were used in this research. It is 

too much to display them at the same time. So, these genes were first clustered using the 

k-means method. The plots on the left side show the profiling data of clusters of genes 

that behave similarly. The bars through the spheres show the amount of variation within 

the cluster. The plots on the right side show the individual genes that make up a currently 

selected cluster. Genes with similar expression patterns are close to each other in the plots. 

The individual cluster or gene is selected using the ray casting technique. 
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(a) 3D plots for clusters and genes 

(b) Color scale for gene expression levels. 

Figure 3.3 Visual representation for gene expression profiling data 

3.4 Combining metabolic networks and gene expression profiling data in virtual 

reality 

Metabolic networks and gene expression profiling data need to combine together 

for a better understanding of the dynamic behaviors of metabolic network. They are 

represented as scenes uniformly and rendered in virtual reality environments (Figure 3.4). 

Users navigate through the scenes. The relative position between two scenes is adjustable. 

V 

Figure 3.4 Combining a metabolic network and gene expression profiling data together in 

VR 
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Metabolic networks and gene expression profiling data communicate with each 

other. Both of them contain the same gene names (Not all genes in the expression data 

link to the networks since even in model organisms such as Arabidopsis, the function of 

most genes is still unknown). The communication between two scenes are achieved 

though the gene names. If a gene node is selected in the network, it is easy to locate it in 

the profiling data, and vice versa. The communication is important for understanding the 

network behaviors. The user may want to know its expression profile when he is looking 

at a gene node in the network. The visual representation the expression profile will be 

brought to the front of the user. He may also want to see the reactions the gene takes part 

in (Section 4.2) if its expression profile is very special. The interactions among the user, 

the metabolic network, and gene expression profiling data are illustrated in Figure 3.5. 

The fan layout of reactions of interest, the radial layout of reactions of interest, and the 

layout animation are discussed in Chapter 4. 

Scene 

Metabolic Networks 

Select a gene 

interest or 
animation 

Select a metabolite Select a cluster 

Radial layout of 
reactions of 
interest or layoul 

Highlighted 

expression 

Fan layout of reactions of interest Display gene expression of current cluster 

Figure 3.5 Interactions among users, metabolic networks and gene expressions 
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3.5 Discussion 

This chapter introduces the visual representations for metabolic networks and 

gene expression profiling data, the weighted GEM-3D layout, and how to combine two 

scenes in virtual reality. 

3D Shapes and material properties in computer graphics, such as colors, texture 

maps and transparency of geometric objects, can reveal useful information in metabolic 

networks, such as molecule node type, reaction edge type, and molecule names, more 

effectively than 2D flowchart-like displays. In the 3D plot representing gene expression 

profiling data, shapes (the connected lines) and colors are used together to indicate the 

changes of expression levels. The color changes consistently with the height. The color 

and the height change continuously, while the color map method shows the change of 

expression levels discretely. 3D space gives the plot more room so that it is possible to 

add labels for each gene and descriptions for each expression level. 

Stereoscopic VR supplies an effective platform to network visualization. Ware's 

studies [Ware et al. 1993; Ware and Franck 1994] found that graphs (with a 3D layout) 

viewed in stereoscopic VR can be three times as large, in terms of the number of nodes, 

as graphs viewed in a 2D plane. VR features tracked 3D input devices such as wands to 

enable the navigation through two scenes and selecting along the device orientation. 

Navigation through the scenes is actually the rendering of scenes from continuous 

viewpoints implemented by translating and rotating the scenes. VR also features head 

tracking, which enables the movements and rotations of the viewpoint in a small range. 

The 3D layout, navigation, and stereoscopic display help to increase the size of 

understandable networks. For example, two edges may look like they cross each other 

from one viewpoint in a monoscopic display. The apparent crossing will disappear when 
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viewed from another viewpoint, or the depth difference shown by the stereoscopic display 

helps distinguish the edges. 

Heading tracking in VR also helps to the combination of metabolic networks and 

gene expression profiling data. It detects the current position of the viewpoint. The 

expression profile of a gene node can be brought to the position when the user (viewpoint) 

is looking at the same gene node in the network. 

It is a time-consuming task to render large scenes in computer graphics. Multiple 

techniques are used to speed the rendering (and also improve the image quality), such as 

level of detail, billboarding, and mipmapping, in order to achieve an interactive rate for 

large scale metabolic networks in available hardware. The fast development of the low-

cost graphics rendering hardware also popularizes the adoption of computer graphics. 

Another advantage of computer graphics comes from its vector-based essential. When the 

scene is rendered in a 2D window, it has a better quality for the window size scaling than 

bitmap-based drawings. 

For an effective visualization, it is necessary to interactively change the visual 

metaphors, for example, the color for metabolite nodes. The change of shapes, colors, 

and transparency applies no performance penalty in the current rendering hardware. The 

change of texture maps is an exception. However, there is no need to change them since 

they indicate node names. 
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CHAPTER 4. EXPLOITING HIERARCHICAL RELATIONSHIPS 

IN METABOLIC NETWORKS 

4.1 Compound graph model for metabolic networks 

Besides adjacency relationships among molecule nodes, many metabolic networks 

contain some hierarchical relationships. For example, molecules in a network can be 

grouped according to their location within the cell or sub-cellular compartments. One 

compartment may contain multiple molecules. Molecules that appear in different 

compartments are modeled as different nodes. These hierarchical relationships show 

different levels-of-detail in the metabolic network (Figure 4.1). A graph model containing 

both adjacency relationships and hierarchical relationships is called a compound graph 

(Sugiyama and Misue 1991). The compound graph model for the metabolic network with 

compartment information is {G(N, E), T(Nt, Et)}. G(N, E) is a directed graph. N is the set 

of nodes representing various molecule nodes in the network. E is the set of reaction 

edges connecting nodes. T(Nt, Et) is a free tree (a tree without a root). Nt is the union of N 

and the set of nodes representing various compartment nodes. Et is the set of inclusion 

edges representing the hierarchical relationships between compartment nodes and 

molecule nodes. 

Metabolic networks may also contain some quasi-hierarchical relationships. A 

quasi-hierarchical relationship is a loose hierarchical relationship where a child may 

belongs to more than one parent in the hierarchy. For example, a metabolic network may 

include several pathways. A pathway contains molecules. One pathway involves many 

molecules. Some molecules take part in more than one pathway. A quasi-hierarchical 

relationship converts to a hierarchical relationship using duplication. In Figure 4.2(a), 

molecule 'A' appears in two pathways. In Figure 4.2(b), 'A' is duplicated so that each 
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pathway has a copy. There is a duplicate edge between two copies of 'A'. The duplicate 

edges are treated the same as the adjacency edges in the detail-on-demand method 

discussed in the next section. 

A A A  
• • • DC 

Compartment 

D Molecule 

(a) The compound graph model {G(N, E), T(Nt, Et)} 

Network 

Compartment 

• • • •  -*D*- |ii
 

• DMolecule 

(b) G(N, E) 

A A A  
• • • • DC 

Network 

Compartment 

•Molecule 

(c) T(Nt, Et) 

Legends: 
Û Graph nodes 

• Inclusion edges indicating hierarchical relationships 
* Adjacency edges indicating adjacent relationships 

Figure 4.1 A compound network contains hierarchical and adjacency relationships. 

Pathway 

• Molecule 

A A A"1™' 
D *D u • • • Molecule 

(a) (b) 

Figure 4.2 Node duplication converts a quasi-hierarchical relationship to a hierarchical 

relationship 
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A metabolic network is called a compound network if it is represented as a 

compound graph. It is called a standard network if represented as a (normal) directed 

graph. A compound network is reduced to a standard network if all pathway (or 

compartment) nodes and hierarchical relationships are removed. 

4.2 Detail-on-demand visualization method 

4.2.1 Methodology 

Displaying the whole graph representing a large standard network shows the 

overall structure of the network. The drawback is that details such as node and edge 

names are too small to be seen. Zooming into a part of the network and panning to other 

parts show local details but make it difficult to see the global structure. The detail-on-

demand method uses hierarchical relationships in a compound network to allow users to 

dynamically change the visual level-of-detail. The method helps users to understand both 

the global relationships and local details of a large network simultaneously, which was 

observed as key to successful information visualization [Risden et al. 2000]. Figure 4.3 

shows how the detail-on-demand method reduces the number of displayed nodes and still 

maintains the correct relationships in a compound network. 

A snapshot of a compound network, {G(N, E), T(Nt, Et)}, is another compound 

network {GS(NS, Es), Ts(Nst, Est)}. GS(NS, Es) is a directed graph. Ns is the node set 

including two types of nodes: 

Nodes of Type 1. Molecule nodes in expanded compartments (or pathways) 

Nodes of Type 2. Unexpanded compartment nodes 

Es is the edge set including three type of edges: 

Edges of Type 1. Edges connecting nodes of type 1 

Edges of Type 2. Edges connecting nodes of type 1 and nodes of 2 

Edges of Type 3. edges connecting nodes of type 2 
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(a) A compound network contains hierarchical and adjacency relationships. 

Network 

•<• • Pathway/ 
Compartment 
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(b) The snapshot in the level of least details. Adjacency edges in more detailed levels are 

converted to this level. 

A./1 
Network 

• Pathway/ 
Compartment 

Molecule 

(c) Expand the leftmost pathway (or compartment) node in (b), the adjacency edges are 

converted to the currently deepest level accordingly 

A A 
• +•+ d ç 

Network 

• Pathway/ 
Compartment 

Molecule 

(d) Expand one more node 

Figure 4.3 The detail-on-demand method reduces the number of displayed nodes and still 

maintains the correct adjacency relationships in a compound network. 

An edge of Type 2 (an edge between one molecule node and one unexpanded 

compartment node) exists if there is at least one edge in the original compound network 

between the molecule node and one molecule node belonging to the compartment. An 
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edge of Type 3 (an edge between two unexpanded compartment nodes) exists if there is at 

least one edge in the original compound network between two molecule nodes belonging 

to the two compartments respectively. A property called edge density is added for any 

edge of Type 1 or 2 indicating the number of edges between molecule nodes it represents. 

Ts(Nst, Est) is a free tree (a tree without a root). Nst is the set of expanded 

compartment nodes. Est is the set of inclusion edges representing the hierarchical 

relationships between expanded compartment nodes and molecule nodes in them. 

• Pathway/ 

f Compartment 

Molecule 

(a) The directed graph mode GS(NS, Es) in the compound network {GS(NS, Es), 

Ts(Nst, Est)} representing a snapshot in Figure 4.3(c) 

I 
Pathway/ j 
Compartment I 

• • Molecule j 

(b) A tree model Ts(Nst, Est) in the compound network 

Figure 4.4 The compound model representing a snapshot 

A snapshot is generated out of the original compound graph according to the 

definition and the current status (expanded or unexpanded) of the compartments. The 

snapshot with all compartments expanded is the same as the original compound graph. 

4.2.2 Visual representation for compound networks 

Unexpanded compartment (or pathway) nodes are initially represented as 

translucent cubes with their names on the each surface (Figure 4.5(a)). The size of a cube 

is proportional to the number of molecule nodes it contains. Once a compartment node is 

A 
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expanded, hierarchical relationships are represented as a geometric inclusion in 3D space, 

i.e., the cube size increases; all the visual representations of molecules belonging to it 

appear; and the molecules are bounded by the compartment node. The cube can turn off 

for a clear view of molecules inside (Figure 4.5(b-d)). 

An edge between two compartments or between a compartment and a molecule is 

represented as a cylinder. The edge density is visually represented by the radius of the 

cylinder (Figure 4.5). 

4.2.3 Detail-on-demand interactions 

Detail-on-demand interactions are enabled by an abstract interface for a tracked 

wand-like input device in VR, which supports both real and simulated wands. A ray (the 

red line in Figure 4.4) is cast from the wand (the green gadget in Figure 4.4) according to 

its position and orientation. When the ray intersects with the visual representation of a 

pathway (or compartment), a button click expands the pathway. When the ray intersects 

any one of molecules in the expanded pathway, a button click will shrink the pathway 

back into the pathway node. 

Figure 4.5 shows some snapshots in the exploration of a network in Arabidopsis 

from the MetNet Database (Wurtele, Dickerson et al. 2003) using detail-on-demand 

interactions. The video clip that shows the exploration is available at 

("http://www.vrac.iastate.edu/research/sites/metnet/Thesis/Yuting/Video/Chapter-4/Video 

4-1 .mpg). There are 572 molecules and 648 reaction edges among molecules in this 

network. The molecules in the network belong to the following sub-cellular 

compartments: plastid, mitochondrion, nucleus, cytosol, plastid stroma, and unknown. 

The network contains three pathways, Acetyl-CoA biotin, starch degradation, and starch 

synthesis. 
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SimWmdowl 

(a) A network whose molecules in the network belong to six compartments 

^..StmWtndowl f_ Q.jX; 

(b) Expand the plastid compartment. After the expansion, the representation of plastid 

(a translucent boundary box) is turned off to show the nodes and edges inside. 

Figure 4.5 Snapshots illustrating the exploration of a metabolic network using 

hierarchical relationships and detail-on-demand interactions. 
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(c) Expand the nucleus compartment. 

(d) Expand the plastid stroma compartment. 

Figure 4.5 (continued) 
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4.3 Layout algorithm for compound networks 

4.3.1 Existing algorithms 

Even in 2D space, there are few works on the layout of compound graphs 

[Sugiyama and Misue 1991; Sander 1995; Eades and Feng 1996; Eades et al. 1996; 

Sander 1996; Eades and Huang 2000], probably due to the difficult nature of the problem. 

Most of them [Sugiyama and Misue 1991; Sander 1995; Eades et al. 1996; Sander 1996] 

converted a cluster node to one or multiple layers and applied layered layout algorithms 

to the converted graphs. 

The 2D layered layout algorithms first reverse the directions of a set of edges to 

make the graph temporarily acyclic (for assigning nodes to different layers in the next 

stage). It is a NP-complete problem to find such a set of edges, the reversion of whose 

directions makes the graph acyclic, as small as possible. In the second stage, nodes are 

assigned to layers, which correspond to parallel equally-spaced lines in the final layout. It 

is also a NP-complete to find a layered partition of nodes that satisfies the constraints of 

same oriented edges directions (e.g. downwards) with the bounded drawing area. In the 

third stage, nodes are ordered in each layer. It is NP-complete to find an order of nodes to 

minimize the number of edge crossings between two consecutive layers. In the final stage, 

the positions of nodes in each layer are defined. There are different heuristics for these 

NP-hard problems [Sugiyama et al. 1981]. 

When extending the 2D layered method to 3D space [Ostry 1996], the barycentric 

heuristic for finding the order of nodes in each layer in 2D space does not work. The 

barycentric heuristic calculates the position of a node in one layer as the bary center of its 

adjacent nodes in the consecutive layer. There is a primary layer, where the node 

positions are arbitrarily assigned. The barycentric heuristic causes collisions when two or 

more nodes in one layer have the same set of adjacent nodes in the consecutive layer. In 
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2D space, the collision can be resolved by separate the colliding node to a predefined 

distance in the one dimensional layer. In 3D space, the separation is in a two dimensional 

plane and an arbitrary separation direction may cause further collisions. Ostry resorted to 

the force directed method for the node position in each layer, using the layout generated 

by barycentric heuristic as initial embedding. 

[Ware et al. 1997] implemented a 3D layout based on the layered method for 

visualizing complex software structures, which contain hierarchical relationships, like the 

inclusion of multiple classes in a single source file, and adjacency relationships, like the 

method calls among different classes. The layered method is recursively used in different 

hierarchical levels. The longest path layering is used in the assignment of layers to nodes 

in different hierarchical levels, which layers nodes in the breadth first order. The force 

directed model is used to taking into consideration the edge connecting nodes nested 

within one node to nodes nested within another node in layering. Each layer is further 

divided into a grid. The nodes in the layer are initially located in the random grid points. 

The force directed method is used to move the nodes to different grid points to reduce the 

edge crossings between two consecutive layers. 

[Eades and Huang 2000] introduced a force directed model for the compound 

graph layout in 2D space. There is a force for each node in one cluster to push it toward 

the cluster node and there are different weights for the attractions of edges within a 

cluster and for the attractions of edges crossing clusters. User interventions are needed to 

avoid the overlapping among different clusters. 

[Demir et al. 2002; Dogrusoz et al. 2004] proposed a layout method for the 

compound graph, which represents nesting relationships such as molecular complexes 

and pathway abstractions in 2D space. The force directed method is recursively used in 

different hierarchical levels. 



www.manaraa.com

42 

4.3.2 3D force directed layout algorithm for compound graphs 

Layered methods are not adopted due to two reasons. The existing heuristics for 

the NP-complete problems may not generate satisfactory results for the layout of 

metabolic networks. For example, the longest path layering is used in the assignment of 

layers, which layers nodes in the breadth first order. Metabolic networks may contain 

very long paths, generating too many layers. It may also generate edges crossing multiple 

layers. When extending from 2D space to 3D space, the existing heuristics for the NP-

complete problems may be not enough to generate a solution. For example, the 

barycentric heuristic has to work together with a force directed model to reduce the edge 

crossing between two consecutive edges in the stage of deciding the nodes positions in a 

layer. 

The layout method proposed here for a compound network {G(N, E), T(Nt, E,)} 

combines the hierarchical force model with the simulated annealing method of the GEM-

3D algorithm[Bruss and Frick 1995], which is most effective to accelerate the 

convergence [Brandenburg et al. 1995]. The pseudo code of the algorithm is available at 

Appendix A. Below are the descriptions about the algorithm. 

In the initial embedder, a randomized position is used for each node that belongs 

to N (i.e. leaf nodes in T). The barycenter of its children in T is used for each node that 

belongs to Nt - N (i.e. non leaf nodes in T, or cluster nodes). 

The algorithm calculates the layout in a loop. In each round of the loop, all nodes 

update their positions once according to the hierarchical force model. The loop will stop 

in an equilibrium state where the total force on each node is zero or when the rounds of 

the loops beyond a predefined number, which is usually the number of nodes. 

The hierarchical force model includes the following items, 
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Node Repulsion. For any node, i, belonging to N, there is a repulse 

between i and any other node, j, belonging to N. The repulse is calculated 

as A/1 A | XL, where A is the vector from the current position of j to the 

current position of i, | A | is the length of the vector, and L is the desired 

edge length. 

Cluster Repulsion. For any node, i, belonging to N, - N, there is a repulse 

between i and any other node, j, belonging to N-Nt. The calculation of the 

cluster repulsion compares the distance of i and j, | A |, with the sum of 

the longest distance of i to its children in T, LI, and the longest distance of 

j to its children in T, L2. If | A | is less than the sum of LI and L2, there is 

a repulse calculated as A/1 A | x(Ll + L2) so that the overlapping between 

i and j can be avoided. 

Adjacency Attraction. For each edge of i, e,j or eji, belonging to E in 

G(N,E), there is an attraction between nodes i and j. The computation of 

the attraction is according to the equation of -w%A% | A | /(Lxd>(i)), where 

A is the vector from the current position of j to the current position of i, 

< D ( i )  i s  a  f u n c t i o n  t h a t  l i n e a r l y  g r o w s  w i t h  t h e  d e g r e e  o f  i ,  a n d  w i s  a  

weight factor. The value of w is larger when the parent of i is the same as 

the parent of j (i.e., i and j belong to the same cluster) than the value of w 

when the parent of i is different from the parent of j. 

Hierarchy Attraction. For any node, i, belonging to N, there is an attraction 

between i and its parent, j, in T(Nt, Et). For any node, i, belonging to Nt-N, 

there is an attraction between i and each of its children, j, in T(Nt, Et). The 

attraction is calculated according to the equation of -w%A% | A | /(L%0(i)), 

where A is the vector from the current position of j to the current position 
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of i, <t>(i) is a function that linearly grows with the degree of i, and wis a 

weight factor. 

• Gravity. For any node, i, belonging to Nt, there is a gravity toward the 

barycenter of the current layout, c. The gravity is calculated as w%A, 

where A is the vector from the current position of i to the current position 

of c, and w is a weight factor. 

• Brownian motion. For any node, i, belonging to Nt, There is a random 

impulse (x, y, z). x, y, z are random values between -L/2 and L/2, where L 

is the desired edge length. 

The same simulated annealing method of as in the GEM-3D algorithm [Brass and 

Frick 1995] is used to accelerate the convergence to the equilibrium stage. Nodes only 

move if the movement will result in a reduction in energy. Each node has a temperature. 

The initial temperature is high. The impulse of a node is first scaled by its current 

temperature and then used to update its position. If the current impulse and the last 

impulse of a node are in opposite directions, oscillations occur. The temperature is 

lowered to depress the oscillation. If the current impulse of a node is always 

perpendicular to its last impulse and the angles always have the same direction, rotations 

occur. The temperature is lowered to depress the rotation. 

For a given snapshot, {GS(NS, Es), Ts(Nst, Est)}, molecule nodes in the expanded 

compartment (or pathway) nodes use the positions of corresponding molecule nodes in 

G(N, E) in the original compound graph; unexpanded compartment nodes use the 

positions of corresponding compartment nodes in T(Nt, Et) in the original compound 

graph. Figure 4.6 shows the whole procedure for interactive visualization of compound 

metabolic networks. 
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Figure 4.6 Data flowchart of interactive visualization of compound networks 

4.4 Discussion 

This chapter presents a hierarchical visualization method for metabolic networks. 

The hierarchical relationships in the metabolic networks construct different levels-of-

detail, which can be used to reduce the number of displayed nodes and edges and still 

maintain the correct relationships in large scale metabolic networks. It is easier for users 

to perceive when less information is displayed at one time. 

The metabolic networks containing hierarchical relationships are models a 

compound graph model {G(N, E), T(Nt, Et)}. G(N, E) is a directed graph model 

describing the adjacency relationships among molecules. T is a tree describing the 

inclusion relationships between molecules and pathways or between molecules and 

compartments. A snapshot of the compound graph model indicates the network at a 
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specific level-of-detail, where some of pathways are expanded, i.e., molecules in these 

pathways appear, and other pathways are unexpanded, i.e., only pathway nodes appears. 

The snapshots can also be models as a compound graph model {G(NS, Es), T(Nst, Est)}. 

The algorithm to generate a snapshot from the original compound graph is 

straightforward from the definition and its time complexity is 0(|Nt| + |E|). 

Instead of recalculating the layout for each snapshot, the layout calculation only 

occurs once for the snapshot with all pathway (or compartment) nodes expanded, i.e., the 

original compound graph. The layout algorithm combines the hierarchical force model 

with the simulated annealing method of the original GEM-3D algorithm [Brass and Frick 

1995], which is used to accelerate the convergence. The hierarchical force model can also 

apply to the multiple-level hierarchical structure. In metabolic network, only three levels 

exist, i.e. the network, the pathways or compartments, and the molecule nodes. The time 

complexity of the layout algorithm is 0(k*|Nt|2), where k is the number of rounds to 

converge. For a given snapshot, {GS(NS, Es), Ts(Nst, Est)}, molecule nodes in the expanded 

pathway nodes use the positions of corresponding molecule nodes in G(N, E) in the 

original compound graph; unexpanded pathway nodes use the positions of corresponding 

compartment nodes in T(Nt, Et) in the original compound graph. Besides the efficiency, 

this method also keeps a better mental image for users. Except for the node being 

expanded or shrunk, all other nodes stay in their previous positions. Two expansions of 

one pathway node are guaranteed to have the same internal layout. 

The detail-on-demand method exploits the different levels-of-detail in metabolic 

networks dynamically. The network is initially displayed in the least level-of-detail. All 

pathway (or compartments) nodes are unexpanded. The user can select any pathway of 

interest and trigger the expansion. He can also select any molecule in the expanded 

pathway and trigger the shrinkage. Selecting and triggering are called detail-on-demand 
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interactions. In virtual reality, detail-on-demand interactions are enabled by a position-

tracked wand-like input device. It is very comfortable to point the wand towards a node 

and press a button on the wand to trigger the expansion or shrinkage of the selected node. 
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CHAPTER 5. REACTIONS OF INTEREST 

The global layout reveals the overall structure of the metabolic network to users. 

Users may also be interested in the reactions that a specific molecule node takes part in. 

The term Reactions of interest (ROI) is used to call the set of all reactions (in the network 

in study) that a molecule takes part in. The molecule node is called the focus node. Given 

a focus node, ROI is automatically extracted from the whole network. The abstraction is 

done by exploiting some uniform properties of metabolic reactions, i.e., the substrates 

(metabolite nodes) are on one side of the reaction node; products (also metabolite nodes) 

are on the side of the reaction node; and genes, RNA, polypeptides, and protein complex 

form a quasi-tree rooted at the reaction node (Figure 3.1). A quasi-tree is a loose defined 

tree where a node may have more than one parent. For example, a polypeptide may 

assemble more than one protein complex in a reaction. A depth-first search [Gormen et al.] 

starting from the reaction node extracts the quasi-tree. The substrates and products are 

retrieved through the incoming and outgoing enzymatic edges the reaction node (A 

enzymatic edge is either from a substrate node to a reaction node or from a reaction node 

to a product node). 

5.1 Layout for reactions of interest from the network of enzyme-catalyzed reactions 

focusing on a metabolite 

The ROI focusing on a metabolite is the set of metabolic reactions the metabolite 

takes part in. A layout algorithm, called a fan layout, is proposed to draw the ROI. In the 

fan layout, the reactions are around the focus node (Figure 5.1), like leaves of a fan. Each 

reaction is drawn following the conventions that all substrates are on one side of the 

reaction node, all products are on the other side, and all other nodes form a quasi-tree 

rooted at the reaction node (Figure 3.1). The conventions are for an isolated reaction. A 
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node (other than the focus node) may take part in N (M>1) reactions in a ROI, causing a 

conflict between the drawing of N isolated reactions. To resolve this conflict, the node 

splits into N copies. Each reaction has a copy of the node. This procedure is called a node 

split. The algorithms for the fan layout are available at Appendix B. 

The fan layout shows how the focus node participates in metabolic reactions as 

shown in Figure 5.1. The fan layout can be rotated so that at each time there is a single 

reaction facing the user, giving a better view of each reaction. Choosing a node other than 

the current focus node in the fan layout generates another ROI. A series of ROIs let the 

user navigate through a pathway. 
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(a) A fan layout of reactions of interest focusing on 'IMP' (the node in the center with a 

red label) 

Figure 5.1 Fan layout 
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(b) Users discuss the reactions of interest focusing on 'GMP' in a virtual environment 

Figure 5.1 (continued) 

5.2 Layout for reactions of interest from the network of enzyme-catalyzed reactions 

focusing on a gene 

A key role of genes in metabolic networks is to encode proteins that catalyze 

reactions. In the graph model, the edges go out from the genes to the reactions that their 

encoded proteins catalyze. This property makes the radial layout [Eades 1992; Di Battista 

et al. 1999; Herman et al. 2000] applicable for the ROI focusing on a gene. The radial 

layout arranges all the children nodes on a circle around the parent node. In the ROI 

focusing on a gene, the radial layout algorithm arranges the reaction nodes on a circle 

around the gene (Figure 5.2). The radial layout shows which reactions a gene product 

catalyzes. Drawing radial layouts centered on different genes side-by-side helps to 
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compare these reactions and visualize any differential regulation of the catalysis. Rotating 

the radial layout along the center of the circle, such that at each time one reaction is 

horizontal, gives the viewer a better view of each reaction. The procedure of node split 

(Section 5.1) is needed before applying the layout method to avoid edge crossings. The 

algorithms for the fan layout are available at Appendix C. 
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(a) A Radial layout of the reactions of interest focusing on gene 'AT3G60510' 
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(b) Users compare the reactions of interest focusing on gene 'AT5G35170' and gene 

'AT3G60510'; these two genes have similar expression profiles 

Figure 5.2 Radial Layout 
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5.3 Layout Animation 

Layout animation changes the position of a specific portion of the network while 

keeping the rest unchanged. The goal of the layout animation is to highlight specific areas 

of the metabolic network such as the reactions of interest, or specific pathways. Step by 

step animation, instead of a sudden change, helps users to keep their mental map of the 

network intact. 

The key points in designing layout animation include the initial layout of the 

whole pathway network, the final layout of the sub-network, and the interpolation 

between the initial position and the final position of the sub-network. The weighted 

GEM-3D method calculates the initial layout for the whole network and the final layout 

of the sub-network. The final layout of the sub-graph is translated in front of the user. The 

animation is a simple linear interpolation between the positions of the nodes of the sub

network in the initial layout and their positions in the final layout. The edges between the 

nodes either stretch or shrink according to the node positions. 

The video clip of an animation, which is available at 

(httpV/www. vrac. iastate.edu/research/sites/metnet/Thesis/Yuting/Video/Chapter-5/Video 

5-1 .înov). shows how 'AT2G22190' the putative gene for trehalose-6-phosphate 

phosphatase fits into the known pathways in the MetNet database [Wurtele et al. 2003]. 

The animated portion pulled out of the main graph consists of all the reactions that gene 

AT2G22190 takes part in from the pathways: trehalose biosynthesis and trehalose 

degradation. 

5.4 Discussion 

This chapter describes some methods to explore the local details of a metabolic 

network, including two layouts and a layout animation method. Together with the 

automatic extraction of ROIs, they constitute query functions, by which users can easily 
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find information of interest. Query functions are very necessary for the study of large 

scale networks. The global layout is good to reveal the overall structure of a metabolic 

network. To find the details of an interesting molecule, one way is to navigate through the 

network. A more efficient way is to search the node and let the system bring out the 

detailed information. The user interface to search a node according to its name is Section 

7.1. 

Two layouts are tailor-made for the ROI focusing on a metabolite and the ROI 

focusing on a gene respectively. Addition scenes are generated for ROIs. Users can 

navigation through and selected nodes from the scenes. Since ROIs have less number of 

nodes and edges, it is easy to understand and compare them. 

Layout animation pulls out the interested sub-network and also keeps their 

relationship with the other part of the network. Some research has focused on the 

interpolation for graph animation [Friedrich and Houle 2001; Friedrich and Eades 2002]. 

However, these algorithms apply to complex position changes in the whole graph or to 

different clusters in a graph. They are much more complex and computationally intensive 

than is needed for this application. In this research, only a small part of the network is 

pulled out (and then withdraws to the original position for the turn of the next sub

network) and the majority of the network is kept stationary to keep the user's mental 

model of the network intact. It is not necessary to apply a complex animation method to 

the whole network, which usually contains more than 1,000 nodes. 
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CHAPTER 6. INTEGRATION OF METABOLIC NETWORKS 

AND GENE EXPRESSION PROFILING EXPERIMENTAL DATA 

Gene expression profiling experimental data reveal the dynamic behavior of its 

metabolic network when the organism is responding to external or internal stimuli. The 

experimental data provide a rough measure of the cellular accumulation of corresponding 

messenger RNAs of different genes. 

Few studies have been done to combine gene expression profiling data and 

metabolic pathways. Detlef [Detlef et al. 2000] adds gene expression information into 

(static) KEGG pathway diagrams [Kanehisa and Goto 2000] by coloring the gene nodes 

according to their expression. Kurhekar [Kurhekar et al. 2002] monitors the changing of 

gene expression data with time by adding 'next' and 'previous' buttons into the KEGG 

pathway diagrams. More recently, Ryoko [Ryoko and Toshiyuki 2003] reports the results 

of adding color to gene nodes in the 2D dot layout. Dwyer [Dwyer et al. 2004] extends 

the method of Brandes [Brandes et al. 2003] to map metabolite profiling data to pathways. 

Instead of drawing related pathways in each level of the stack, the new method draws the 

time series of one pathway in each level. The size of the same metabolite node in each 

level is proportional to its profiling amount at a specific time corresponding to this level. 

Chapter 3 introduces a method to construct an extra scene for the experimental 

data and spatially relate them to the scene for the metabolic network (Figure 3.5). Using 

3D space and computer graphics, a tighter integration of these two types of data is 

possible. Section 6.1 presents a color morphing method, Section 6.2 presents a shape 

morphing method, and Section 6.3 presents an edge vibration method. 
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6.1 Color Morphing 

The experimental data are captured using recent gene probe tools such as 

Asymetrix's Genechip® and formatted as a 2D array using the gene and the condition 

under which the expression level are captured as dimensions. It is intuitive to represent 

the different expression levels of a gene under different conditions temporally, i.e., show 

one expression level at one time. The data used in this research come from an experiment 

in carbohydrate metabolism that used Affymetrix ATH1 GeneChip® data from the 

Wurtele Lab (Li, Foster et al. 2004). In this particular experiment, leaves were sampled 

12 times over a diurnal cycle. Each sampling point has an expression level. The value in 

between of two ending sampling points is the linear interpolation of them. If the 

experimental data are sampled temporally, the sampling intervals are used for 

interpolation; otherwise a fixed interval is used. 

Humans are very sensitive to the change of colors. Using different colors for 

different expression levels highlights dynamic behaviors of the metabolic network. The 

color morphing will apply upon gene nodes, RNA nodes and the transcription edges 

between them. Two colors are defined for the highest level and the lowest level. The 

color for any other level in between is the linear interpolated color of them. The user 

interface to set two colors and control the color morphing is showed in Section 7.1. 

Four snapshots of a video clip, which shows the color morphing of a metabolic 

network, are listed in Figure 6.1. The video clip is available at 

http://www.vrac. iastate.edu/research/sites/metnet/Thesis/Yuting/Video/Chapter-6/Video 

6-1 .mpeg. The network contains two pathways in Arabidopsis from the AraCyc Database 

(Mueller, Zhang et al. 2003): glycerol biosynthesis and glycerol metabolism. A clock is 

available to indicate time. 

http://www.vrac
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(a) 

(b) 

Figure 6.1 Color morphing of a metabolic network 
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(c) 

(d) 

Figure 6.1 (continued) 
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Applying color morphing to the network shows its dynamic behaviors as a whole. 

For example, the expression status of the network is relatively higher if the brightness of 

the network is higher (Figure 6.2(a) and (b)), or vice versa (Figure 6.2(c)). Since other 

types of nodes and edges do not contribute the brightness change, they may be turned off 

to emphasize the brightness change. To look at the dynamic behavior of a specific gene, 

users may stay in front of the node and enable the color morphing. 

(a) 

(b) 

Figure 6.2 Color morphing of ROIs focusing on two genes in radial layout 
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(c) 

(d) 

Figure 6.2 (continued) 

A comparison of two genes about their expression status is of great interests for 

the network study. Applying the color morphing upon the reactions of interest in the 

radial layout (Section 5.2) makes the comparison possible. Figure 6.2 are the snapshots of 

a video clip, which shows the dynamic behaviors of two genes (AT3G60510 and 

AT5G63800) in a time series, along with the biological reactions they take part in 

according to a metabolic network map [Wurtele et al. 2003]. The video clip is available at 
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http://www.vrac.iastate.edu/research/sites/metnet/Thesis/Yuting/Video/Chapter-6/Video 

6-2.mpeg. Figure 6.2 demonstrates that the expression status of AT3G60510 (the left one) 

declines earlier than AT5G63800 (The right one). 

6.2 Shape Morphing 

Shape is one of the important properties to convey information in 3D computer 

graphics. Shape morphing is good to reveal the dynamic information because human 

vision is sensitive to the changes. The dynamic behavior of a metabolic network can be 

visualized by using the shape morphing of edges in the scene for the network along the 

time. Figure 6.3 shows the shape morphing of ROIs focusing on 'AT4G24620' and 

'AT5G49460' in the radial layout. The video clip is available at 

http://www.vrac.iastate.edu/research/sites/metnet/Thesis/Yuting/Video/Chapter-6/Video 

6-3.avi. The bottom radius of the cone representing a transcription edge (between a gene 

node and a RNA node) at one time is proportional to the expression level at that time. The 

edge shape morphing propagates from the transcription edge to the translation edge, to the 

assembly edge if there is one, and to the catalysis edge. There is a time delay between any 

two consecutive edge types. Using shape morphing along the time, the dynamic behavior 

is represented as the flux through the network. 
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(a) 

(b) 

Figure 6.3 Shape morphing of ROIs focusing on 'AT4G24620' and 'AT5G49460' in 

radial layout 
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(c) 

VMG24620 

ïra^^ 

acetyl-CoA 

(d) 

Figure 6.3 (continued) 
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6.3 Edge Vibration 

Movement is another important property to convey dynamic behaviors in 3D 

computer graphics. It is indirect to use movement to display the different expression 

levels of genes in the network visualization because the topology and position 

information of the network need to remain unchanged. The vibration of the cone 

representing a transcription edge meets such requirements. The movement of the edge is 

perpendicular to the axis of the cone and is limited to a range, i.e., the same as the bottom 

radius of the cone, to avoid the potential collision of the edge with other edges and nodes. 

The vibration frequency is proportional to the current gene expression level. Figure 6.4 

contains 2 snapshots from the video clip showing the edge vibration of two ROIs focusing 

on 'AT4G24620' and 'AT5G49460' in the radial layout. The video clip is available at 

http://www.vrac.iastate.edu/research/sites/metnet/Thesis/Yuting/Video/Chapter-6/Video 

6-4.avi. 

6.4 Discussion 

This chapter presents some computer graphics based methods, including color 

morphing, shape morphing, and edge vibration, to integrate the gene expression levels 

into the metabolic network visualization. The color is a basic material property in 

computer graphics. The latter two can be simply implemented by the scale transformation 

and the translation transformation respectively in 3D computer graphics. The extra 

dimension of 3D space gives more room to shape change and movement than 2D space. 

The potential problem is that it is difficult to follow the changes of the colors, 

shapes, or positions of multiple edges at the same time. The solution is to first apply the 

change to the reactions of interest (ROI) focusing on a gene node that contain only one 

gene node, and then look at multiple ROIs. It generates better results than apply the 

change to the whole network. 
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Figure 6.4 Edge vibration of ROIs focusing on 'AT4G24620' and 'AT5G49460' in radial 

layout 
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CHAPTER 7. METNETVR SYSTEM DESIGN 

Traditional methods for the visualization of abstract information like metabolic 

networks use 2D space and a flowchart-like display. It is controversial to apply 3D space, 

computer graphics, and virtual reality (VR) for abstract information visualization. To 

investigate the advantage, a usability test was conducted for MetNetVR and MetNetVR 

Tweek.. MetNetVR implements the methodologies and algorithms described in the 

previous chapters to visualize high dimensional metabolic networks in 3D virtual reality. 

MetNetVR Tweek, a Java program with a 2D Graphical User Interface (GUI), 

communicates with MetNetVR in the real time, displays the detailed text information that 

is important to biologists but difficult to visualize, and enable complex interactions 

beyond the wand based interactions in VR. MetNetVR and MetNetVR Tweek are 

introduced in Section 7.1. The usability test is described in Section 7.2. Section 7.3 

compares the exploration of a large network in MetNetVR and a 2D metabolic network 

visualization system. Section 7.4 compares the hierarchical visualization method with 

other nonhierarchical visualization methods. 

7.1 MetNetVR and MetNetVR Tweek 

7.1.1 System overview 

Multiple global graph layout methods are implemented to automatically decide 

node and edge positions. The network is then visually represented by a scene. Shapes and 

material properties, such as color, transparency, and texture, are used as visual metaphors 

indicating basic properties of nodes and edges. Reactions of interest are automatically 

extracted from the whole network according to the user's selection of the focus gene or 

metabolite. Hierarchical relationships or quasi-hierarchical relationships, together with 

detail-on-demand interactions, help users to understand global relationships and local 
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details of a large scale metabolic network simultaneously. The interactions for changing 

the viewpoint position, selecting a node, and triggering various actions are enabled by 

head position tracking device and a tracked wand-like input device in virtual reality. 

MetNetVR also provides a solution for linking text-rich information that is 

important to biologists but difficult to visualize, such as chemical reaction stoichiometry, 

sources of information, and synonyms, to network nodes and edges. Each node and edge 

is linked to a record in the database of text-based annotation data. MetNetVR Tweek, a 

Java program with a 2D Graphical User Interface (GUI), communicates with MetNetVR 

and displays the detailed text information. 

The other function of MetNetVR Tweek is to contain complex interaction 

commands beyond the wand based interactions. These commands enable functions in 

MetNetVR to manipulate network visualization, such as graph theory operations, layout 

management, and visual metaphor controls. 

MetNetVR is implemented in C++ and uses two APIs, VRJuggler 

(http://www.vriuggler.org/") and OpenSG (http://www.opensg.org/). VRJuggler is a 

flexible development platform for VR applications (Bierbaum, Just et al. 2001). It enables 

MetNetVR to run in a range of platforms without changing source codes, from a fully 

immersive CAVE (Cruz-Neira, Sandin et al. 1993) to a conventional desktop. OpenSG is 

an OpenGL based API for graphics scene construction and rendering (Reiners, Vo et al. 

2002). MetNetVR Tweek is implemented in C++ and Java and uses the Tweek API 

(Hartling, Bierbaum et al. 2002), which uses the Common Object Request Broker 

Architecture (http://www.corba.org/') for the cross-language communication. MetNetVR 

Tweek runs on a portable tablet computer and connects to MetNetVR wirelessly when the 

latter runs in an immersive CAVE. It can also run on the same desktop as MetNetVR 

when the latter runs on a conventional desktop. Figure 7.1 shows MetNetVR running in a 

http://www.vriuggler.org/
http://www.opensg.org/
http://www.corba.org/'
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CAVE and MetNetVR Tweek running on a tablet computer. MetNetVR Tweek 

communicates with the visualization program wirelessly and displays the text rich 

information of the network. 

Figure 7.1 A user navigating through the metabolic network in a CAVE. 

7.1.2 Interactions in MetNetVR Tweek 

Wand-based interactions in MetNetVR include moving forward and backward 

along the wand orientation, rotating right and left along the center of the network, 

selecting the nodes, and triggering such actions as the generation of reactions of interest, 

the expansion of the selected pathway, etc. All other functions are called through menus 

in MetNetVR Tweek, including graph theory operations, layout management, and visual 

metaphor controls. These functions are necessary for an effective visualization of large 

metabolic networks. The main interaction commands in the MetNetVR Tweek menu fall 

into categories described in the following subsections. 
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7.1.2.1 Network management 

In MetNetVR, both the standard graph model and the compound graph model 

exist for a metabolic network. They come from the same data source. The standard 

network filters out pathway (or compartment) nodes and all hierarchical relationships. 

The adjacency relationships among molecules are identical between a standard network 

and a compound network with all the compartments expanded. The layout of the 

compound network groups the molecules belonging to one compartment together. The 

layouts of the standard network only look at graph connectivity. Users toggle between 

these representations. 

7.1.2.2 Standard network visualization 

Users switch among different layouts for the standard network including a GEM-

3D layout, a weighted GEM-3D layout (Chapter 3), and a multilevel force directed layout 

(Gajer, Goodrich et al. 2000). Ideal edge length is adjustable for each layout. The 

adjustment of the ideal edge length likes a zoom in/out function. However, it keeps the 

molecule node size fixed to maintain the label's readability. Small edge lengths are 

suitable for the overview of a network because they keep the network volume small. 

Large edge lengths work best for local details as they reduce the overlapping of node 

labels. 

Users select a metabolite or a gene from displayed in a scrollable list which 

contains text-rich information for molecules in the network. The scene is automatically 

generated for the reactions of interest focusing on the selected metabolite (Section 4.1 and 

4.2), or .the reactions of interest are pulled out using the layout animation (Section 4.3). 

Users can pause, resume, or stop the layout animation. 
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Users select a molecule of any type from the node list and set the step size. The 

sub-network composed of the selected molecule and its neighbors within the distance of 

the step size is automatically generated. Users switch the display between the whole 

network and the sub-network. 

Tweek JavaBwn Loader 

File Edit Network Beans Help 

Node Colors i Reaction Edge Colors _ Network Dynamic Behavior Node List 

Reaction Edge List Navigation Standard Network Compound Network 

Scene Management 

Toggle 
ON/OFF 

C Network (ON) 
C Gene expression (OFF) 
C Gene cluster expression (OFF) 
O Minimap (ON) 
C Reactions of interest focused on a metabolite (OFF) 
C Reactions of interest focused on a gene (OFF) 

Layout Management for network 

C 3D Graph EMbedder (GEM3D) layout 
C Weighted CEM3D layout 
C Multi-level force directed layout 

Set Lay,,. 

Ideal Lengh Setting for Current Layout 

| Length — | Length ++ | 

Geometry Managment 

Toggle 
ON/OFF 

C Label(ON) 
C Edge(ON) 
C Gene(ON) 
O RNA(ON) 
O FblyPeptide(ON) 
C ProteinComplex(ON) 

Node Geometric Shape 

C Simple Geometry 
C Text Geometry 

Color morphing according to gene expression 

Start Stop 

New message in message panel 

Figure 7.2 GUI for interactions controlling standard network visualization 

7.1.2.3 Compound network visualization 

Users select the type of hierarchical relationships to explore, including the 

relationships between molecules and pathways and the relationships between molecules 

and compartments (Chapter 5). 
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Tweek JavaBeari Loader 

File Edit Network Beans Help 

| Node Colors j Reaction Edge Colors | Network Dynamic Behavior I Node List 

Reaction Edge list | Navigation j Standard Network Compound Network 

Scene Management 

C Network (OFF) Toggle 
ON/OFF 

Hierarchical Relationships 

r Network - > Pathway- > Node 

C> Network->Location->Node 

Node Shape 
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Toggle 
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0 Node 
C Label 
C Edge 
C Boundary B^xes 
C Gene 
C Rna 
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O ProteinComplex 
C Pathway/Location Edge 

New message in message panel 

Figure 7.3 GUI for interactions controlling compound network visualization 

7.1.2.4 Visual metaphor control 

Users select colors for different types of nodes and different types of reaction 

edges. Different colors for different types of nodes and edges help users to easily 

recognize the type of specific nodes and edges. 
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File Edit 

Tweek javaBean Loader - n 

Network Beans Help 

Beans Beans 
Reaction Edge List j Navigation | Standard Network j Compound Network 

Node Colors j Reaction Edge Colors j Network Dynamic Behavior | Node List 

Choose Colors: 

REACTION.NODE J_ Reaction Color J 

RNA.NODE 

METABOUTE.NODE | Metabolite Color | 

1 New message in message panel 

Figure 7.4 GUI for interactions controlling node colors 

Users toggle the display of molecule nodes or reaction edges on and off to 

increase readability. For example, the user can temporarily turn off edges to read a node 

label because one or two letters may be blocked by the incoming/outgoing edges of this 

node. The user can also temporarily turn off node labels for a better vision when trying to 

find a cycle structure in the network. 

Users can select the visual representation for nodes. Besides the visual 

representation introduced in Section 3.1, an inexpensive option is available regarding the 

needed computation for rendering. The node is represented as a geometric object 

indicating the node name. A translucent boundary box is available for each node. The 

boundary boxes of the nodes of the same type have the same color. The background is 

used to reduce the confusion of letters from different nodes visually overlapping. Making 

the background translucent is designed to avoid the visual blocking of the scene behind 

the node. All the nodes share the same white and opaque material. All the nodes of the 
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same type share the same translucent material for the boundary box. Few materials make 

the rendering faster. The disadvantage of the inexpensive solution is the dimming of the 

node name due to the translucent boundary box. Users select the type of the visual 

representation for nodes according to the network size and the quality requirement for the 

rendering. 

7.1.2.5 Network dynamic behavior management 

Users set the colors for the highest and the lowest expression levels and enable the 

color morphing to show the dynamic behaviors of the whole network or reactions of 

interest (Chapter 6). 

7.1.2.6 Navigation management 

Users select a specific node in the node list. The viewpoint in MetNetVR moves 

to the selected node automatically. Users select to reset the navigation. The viewpoint in 

MetNetVR moves back to the original position. 

7.1.3 Discussion 

MetNetVR and MetNetVR Tweek together implement the proposed interactive 

visualization of metabolic networks (Section 1.1). The implemented interactions are 

supposed to be necessary and sufficient for an effective and efficient visualization. 

MetNetVR Tweek has the potential to be a good collaboration tool. One user is in 

charge of the navigation and intersection using a wand in a virtual environment. Another 

user uses MetNetVR Tweek to control network visualization. They two can work together 

to explore the network. For example, the former selects a metabolite node using the wand. 

The node record will be automatically highlighted in the node list in MetNetVR Tweek. 

The latter can use MetNetVR Tweek to enable a scene in MetNetVR, which represents 

the reactions of interest focusing on the selected metabolite. 



www.manaraa.com

73 

7.2 Pilot Usability Test 

7.2.1 Test setting 

An initial usability test is conducted to see whether 3D space, computer graphics, 

and VR technologies are helpful to study high dimensional metabolic networks. The test 

is also designed to check whether the functions of MetNetVR enabled by both wand 

based interactions and the menu in MetNetVR Tweek are necessary and sufficient for 

effective visualization. The hypotheses for the usability test are: 

I. Shapes and material properties in computer graphics, such as color, textures and 

transparency, are helpful for revealing useful information, such as molecule type, 

reaction edge type, and molecule names in the visualization of high dimensional 

metabolic networks. 

II. Metabolic networks with 3D graph layouts and displayed in a stereoscopic VR 

environment are helpful for finding various structures contained in large networks, 

such as routing, cycles, groups, highly connected nodes, etc. 

Six graduate students took part in the test as subjects. Table 7-1 describes their 

backgrounds related to MetNetVR. 

Table 7.1 Subject backgrounds 

Major Bioinformatics and Computational Biology 
Age 23-30 
Gender Female: 1 

Male: 5 
Computer Experiences: 5-16 years 
3D video game experiences Very often: 2 

Some: 2 
Seldom: 1 
Never: 1 

Education Ph.D. student: 5 
Master student: 1 

Color Blindness None: 5 
Red and Green Color Blindness: 1 
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The subjects were asked to finish the following nine tasks corresponding to the 

two hypotheses. 

I. Find the name and the type of two randomly selected molecule nodes (Tests first 

hypothesis). 

II. Find any two molecule nodes whose connectivity is larger than or equal to five 

(Tests second hypothesis). 

III. Find the routing path between two given molecule nodes (Tests second 

hypothesis). 

IV. Find whether there is a cycle or an alternate path in the network (Tests second 

hypothesis). 

V. Find all pathways in the network by exploring the compound network (Tests 

second hypothesis). 

VI. Find all cellular compartments in the network by exploring the compound network 

(Tests second hypothesis and the hierarchical layout described in Chapter 5). 

VII. Find the overlapping molecules between two given pathways, i.e., molecules 

appear in two pathways, by exploring the compound network (Tests second 

hypothesis and the hierarchical layout described in Chapter 5). 

VIII. Find the reactions that a specific metabolite node is involved in (Test the 

functionality of the fan layout describe in Section 5.1) 

IX. Find the reactions that a gene node is involved in (Test the functionality of the 

radial layout described in Section 5.2). 

A two-hour training section was conducted before the test to introduce the 

functions and interactions needed to finish each task. Each subject answered two 

questions for each task. The first question was an effectiveness question to find whether 

the subject completed the task correctly. The second was an attitude question asking how 
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helpful the corresponding functions and interfaces supplied by MetNetVR and MetNetVR 

Tweek were to finish the task. The subject selected one among four answers, 'Very 

Helpful', 'Helpful', 'Not Helpful', and 'Other'. The subject gave an explanation if 

'Other' was selected (Table 7-2). 

The test was carried out in a desktop with dual monitors. MetNetVR ran in a full 

screen passive stereo mode in one monitor. The subjects wore LCD shutter glasses to see 

the stereo display. Head tracking was not used. The wand was simulated by the mouse 

and the keyboard in the desktop. The simulated wand has the full six degrees of freedom 

(The subjects were observed to only use yaw and pitch in the test). The MetNetVR Tweek 

program was displayed on the second monitor. This simple configuration tested 

MetNetVR as a tool for daily use. 

7.2.2 Results and analysis 

All the subjects successfully completed all the tasks and gave the correct 

responses to all effectiveness questions except for one subject who failed Task VII. There 

were two main observations about the functioning of MetNetVR during the test: 

• The current rotation method, which is along the center of the network, is effective 

when the network is not too large and the viewpoint is out of the network. When 

the network is large, the user should be within the network to get details. New 

rotation methods, the rotations along the viewpoint and the rotation along an 

arbitrary position, for example, a selected node, may help users explore large 

graphs. Interactions will be needed to switch among different rotation centers. 

• Setting the mapping between nodes/edges and colors are crucial for users with 

partial color blindness. One of the test subjects had red and green color blindness. 

He had to set the colors for all types of nodes and edges before the first task. 
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The analysis focuses on attitude questions. Below is a summary of the answers of all 

subjects to the attitude questions. 

Table 7.2 Summary of the user responses to the attitude questions in the seven tasks. 

Task Very Helpful Not Other 
Number Helpful Helpful 
1 4 1 0 1 (Couldn't see stereo) 
2 3 2 0 1 (Couldn't see stereo) 
3 1 2 3 0 
4 3 2 1 0 
5 3 3 0 0 
6 6 0 0 0 
7 2 3 1 0 
8 5 1 0 0 
9 5 1 0 0 

The analysis of testing results supports the hypothesis that the 3D space, computer 

graphics, and stereoscope are helpful for studying high dimensional metabolic networks 

given the conditions that users have both biological knowledge and computer experiences. 

Subjects' 3D experiences and gender difference don't make large difference in their 

performance. Since all subjects are graduate students and in the ages from 23 to 30. The 

conclusion may only apply for users in the same education level and age range. 

The usability testing suggests that stereo virtual reality and hierarchical viewing 

can be used to create an effective analysis environment and reveal hierarchical 

relationships in metabolic networks. 

The analysis also shows that simulated wand interface using the mouse and the 

keyboard is not comfortable for navigation and control (for example, in Task III) for most 

of the subjects, although a real wand device in an immersive CAVE is very intuitive. 

7.2.3 Discussion 

Usability testing suggests that 3D computer graphics is suitable for visualizing 

abstract information like metabolic networks. Metabolic networks are modeled as graphs 
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whose nodes and edges represent biological properties. Material properties in computer 

graphics, which were originally used for photorealistic rendering of the real world, are 

effective visual metaphors for basic biological properties. 

Metabolic networks usually have a large number of nodes and edges. The 

combination of 3D space, rendering from different viewpoints, and stereoscopic display 

helps to increase the size of understandable networks. For example, two edges may look 

like they cross each other from one viewpoint in a monoscopic display. The apparent 

crossing will disappear when viewed from another viewpoint, or the depth difference 

shown by the stereoscopic display helps distinguish the edges. 

Besides enabling binocular disparity through stereoscopic display, VR has the 

option of head tracking to enable the rendering of the metabolic network from different 

and continuous viewpoints. Moving the viewpoint and fixing the network position have 

the same effect as fixing the viewpoint and moving the network position in an opposite 

way. Both of them bring about motion parallax, which is helpful to understand the 

complex structures of high dimensional metabolic networks. VR also features tracked 3D 

input devices such as wands to enable movement and find intersections along the device 

orientation. Intersecting with visual representation to pick a node is of great importance 

for interactive visualization. For example, in the detail-on-demand method described in 

Section 2, user needs to pick the pathway (or compartment) node in order to expand it. 3D 

input devices can be simulated by mice and keyboards with full six degrees of freedom in 

conventional desktops. However, controlling the position and orientation in 3D space 

using mice and keyboards requires considerable practice. 

The detail-on-demand interactions enable different hierarchical views of a 

metabolic network. 3D geometric inclusions, together with the transparency material 

property and stereoscopic display, are effective to represent hierarchical relationships in 
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the network. Hierarchical visualization reduces the amount of information displayed at 

one time and helps users understand both the global relationships and local details of a 

large network simultaneously. 

Text-rich information display methods and complex interaction methods are 

needed for an effective visualization. In traditional 2D visualization systems, it is very 

natural to add popup windows and menu items for this purpose. In a 3D computer 

graphics based visualization systems for metabolic networks, an auxiliary 2D GUI 

program can be used to display text-rich and domain-related information and enable 

interactions to manipulate visualization. 

7.3 Qualitative comparison between 3D space and 2D space for metabolic network 

visualization 

FCModeler [Dickerson et al. 2003] is a metabolic network visualization system 

in 2D space. It shares the same input file structure of metabolic networks with MetNetVR. 

For the sake of comparison, the 2D GEM layout is used in FCModeler and the 3D GEM 

layout is used in MetNetVR. 

MetNetVR was run in the simulation mode, in which the rendering is monoscopic 

but perspective, the position and orientation of the viewpoint is controlled with the mouse 

and the keyboard. The monoscopic rendering is for the purpose of viewing without any 

aids. 

To compare 3D with 2D visualizations directly, only simple navigation methods 

are used in two systems. In MetNetVR, the nonhierarchical visualization is used. The 

navigation includes the network movement along the wand orientation, the network 

rotation along its center, the change of the viewpoint position, and the change of the 

viewpoint orientation. In FCModeler, navigation includes zooming in and out of the 

network and changing of the view port using the horizontal and vertical scrollbars. 
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Figure 7.5 shows some snapshots of the exploration of a network in Arabidopsis 

from the MetNet Database [Wurtele et al. 2003] using FCModeler. Figure 7.6 shows the 

exploration of the same network using MetNetVR. A video clip is available at 

(http://www.vrac. iastate.edu/research/sites/metnet/Thesis/Yuting/Video/Chapter-7/Video 

7-l.avi) for the exploration using MetNetVR. There are 572 molecules and 648 reaction 

edges among molecules in this network. The snapshots are caught when both systems are 

running in the full screen mode. 

7.3.1 Comparison of global views 

A global view helps the user to find some structures like cycles, alternative paths, 

etc., in the network. To look at the global structure of the network, FCModeler zooms out 

the network till it fits into the current window size, which is the full screen size, as in 

Figure 7.5(a). For the same purpose, MetNetVR moves the network away from the 

viewpoint and rotate the network (Figure 7.6(a-c)). The network should be far away 

enough from the viewpoint so that the whole network appears in the viewing volume. 

Rotation along the network brings about the motion parallax, which adds depth 

information. The depth information plays an important role to reveal the global structure 

when the stereoscopic display is not available. The node label size of in Figure 7.5(a) is 

much smaller than that in Figure 7.6(a, c) (The labels in Figure 7.6(b) are turned off while 

the network rotates). The comparison result can be applied to the node label sizes in the 

original snapshots of MetNetVR and FCModeler because the node label sizes in the 

Figure 7.5and Figure 7.6 share the same proportion to the node label sizes in the original 

snapshots (The snapshots are caught when both systems are running in the full screen 

mode and now they are displayed at the same size in this document). The comparison 

result, together with the fact that the edge lengths are proportional to the largest node 

http://www.vrac
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label size, implies that for the same display window, 3D space can display more nodes 

than 2D space; the nodes have the same size in the display window. 

7.3.2 Comparison of local views 

The local view of some part of the network gives detailed information like the 

node name, edge types, etc. Figure 7.5(b-d) and Figure 7.6(d) show the procedure where a 

tree structure rooted at the node 'BAM3-5-6-7-8 Complex' (the red rectangle area in 

Figure 7.5(a)) is explored. In FCModeler, if the user notices from the global view that 

within the red rectangle area there is a tree structure, he needs to zoom in the network to a 

readable size and then use scrollbar to locate and browse the tree structure (Figure 7.5(b-

d)). In MetNetVR, the user notices the tree structure when he rotates the whole network 

(the red rectangle area in Figure 7.6(c)). He moves the tree structure toward the viewpoint 

till the label 'BAM3-5-6-7-8 Complex' is readable (Figure 7.6(d)). The labels of'BAM3-

5-6-7-8 Complex' in MetNetVR and FCModeler are assumed to have the same 

readability because they have similar size in Figure 7.5(d) and Figure 7.6(d). MetNetVR 

keeps the tree structure within the display window. FCModeler resorts to the sliding of 

scrollbars to cover the whole tree structure (Figure 7.5(b-d)). MetNetVR keeps better 

mental images of the tree structure for the user. Another observation is that there are some 

edge crossings near the node 'BAM3-5-6-7-8 Complex' in FCModeler (Figure 7.5(d)). 

The edge crossing issue is related to the layout algorithm. However, MetNetVR and 

FCModeler use the same type of layout algorithm, i.e. the force directed layout, and share 

the same force model. The only difference is the dimension of force directions and node 

positions. 3D space has more rooms to avoid edge crossings. There may appear some 

edge crossings in MetNetVR when the network is viewed from some directions. The edge 

crossings will disappear when the network viewed from other directions. 



www.manaraa.com

81 

IAI3BWWB 

£fe Mew Lay out graph ht erection ejnUow 

Q B B:O «;a 
| AKKodefet 

i
 

!
 ad 0| 

(a) 

F6e View Law* Graph Interaction Wndow 

an 'W.a> so#a 

ATsawm 

(b) 

Figure 7.5 Snapshots of FCModeler 



www.manaraa.com

82 

file Vkw LwM Oiwh hflerecOon ' 

iàjiH: ^ Bio;#?! 
A KMMMt CVrotKtOMHie^utliwayiPaihwraylS-tnatMlyJint-lvstSiMactMPMhwaytJrip 

'I -•'• 

(c) 

E6e yew Uwo» Sfapti veetacttm HMm 

Q H ^ % « 'S O;*t 
A FCModrtef CT^cjeclOabutfwdwgsiPathwiirlSt 

• • implv.x 

(d) 

Figure 7.5 (continued) 



www.manaraa.com

83 

* Sim Window t PiXi 

Wand E .. ;• IX 

(a) 
> stmWMo„l , O X  

(b) 

Figure 7.6 Snapshots of MetNetVR 

Wand E L • |X I 



www.manaraa.com

SimWindewl 

84 

• w.„d! L IB IX 

(c) 

H 
H 

(d) 

Figure 7.6 (continued) 



www.manaraa.com

7.4 Qualitative comparison between hierarchical visualization and nonhierarchical 

visualization 

To explore metabolic interactions in a specific compartment, the hierarchical 

visualization is obviously better than the nonhierarchical visualization because the 

interactions are grouped together in the hierarchical layout. The comparison below is 

about an exploration involving multiple compartments. 

Figure 7.7 shows MetNetVR exploring the node 'BAM3-5-6-7-8 Complex' (the 

green rectangle area) in the same network as in Figure 7.6 using the hierarchical 

visualization method introduced in Chapter 4. The expanded compartment is 'plastid' in 

Figure 7.7(a). There are such edges as BAM3->reaction node, BAM5->reaction node, 

BAM6->reaction node, BAM7->reaction node, BAM8->reaction node, and reaction 

node-> BAM3-5-6-7-8 Complex in the plastid. The knowledge that these edges and nodes 

belong to the plastid can be perceived from the visualization. Other knowledge about the 

nodes and edges within the plastid is easy to perceive. 

The cross-compartment edges (edge in the blue color) also show connections 

between compartments. In Figure 7.7(b), the unknown compartment is expanded. For 

each one of BAM3, BAM5, BAM6, BAM7, and BAM8, there is a node whose 

compartment is unknown, which acts as a transition to the cytosol. These nodes are 

reaction nodes. In Figure 7.7(c) the cytosol is expanded. Each corresponding node has the 

same node name as the one in the plastid. This means that the same molecule appears in 

both compartments. The two copies are connected through a reaction node whose location 

is unknown. In Figure 7.7(d), nodes are explored in the cytosol. 
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Comparing the procedure with the nonhierarchical visualization procedure 

described in Figure 7.6, which excludes the hierarchical relationships, there are following 

observations, 

1) The hierarchical visualization reveals the relationships of molecule nodes and 

edges to pathways or compartments. 

2) The information is displayed in a more organized way in the hierarchical 

visualization. A single compartment or pathway is easier to layout and fit into a 

display window than the whole network. For example, almost all node and edges 

within the plastid are perceivable in Figure 7.7(a). 

3) The hierarchical visualization also reveals the global relationships. The cross-

compartment (or cross-pathway) adjacency relationships are easy to perceive at 

the compartment level and the molecule-compartment level. In the former level, a 

single and thick edge indicates the cross-compartment adjacency relationships. In 

the latter level, the edges are in the shape of cone whose top is the compartment 

node (e.g. the cross-compartment edges between the plastid stroma and the 

molecule nodes in the expanded plastid in Figure 7.7(a)). 
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CHAPTER 8. CONCLUSIONS 

8.1 Summary 

In this work, we combined graph layouts in 3D space, computer graphics, and 

virtual reality to increase the size of understandable metabolic networks. A framework for 

an interactive visualization was proposed and implemented in MetNetVR. The user can 

control all the stages of graph drawing, including modeling, layout, and rendering. 

In the modeling stage, the user can choose between the directed graph model and 

the compound graph model to represent the metabolic network. The directed graph model 

only considers the adjacency relationships in the network. The compound graph model 

also takes the hierarchical relationships into consideration. We call the visualization using 

the former model a nonhierarchical visualization and the visualization using the latter 

model a hierarchical visualization. For the hierarchical visualization, the user can choose 

the pathway-molecule hierarchical relationships or the compartment-molecule 

hierarchical relationships. The user can also extract reactions of interest according to their 

selection of the focusing node in this stage. 

In the layout stage, for the nonhierarchical visualization, the weighted GEM-3D 

layout was adopted for the graph. The edge weights are decided according to the edge 

types so that enzymatic edges (from metabolite nodes to reaction nodes, or from reaction 

nodes to metabolite nodes) are emphasized by their lengths. Some important parameters, 

e.g. the ideal edge length, of the layout algorithm are adjustable by the user. For the 

hierarchical visualization, a layout algorithm was proposed, which combines the 

hierarchical force model with the simulated annealing method. The algorithm only runs 

once for the snapshot of the compound graph, where all the cluster nodes are expanded. 

The positions for all nodes are recorded and retrievable for different snapshots generated 
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by the detail-on-demand interactions. The fan layout was proposed for the reactions of 

interest focusing on a metabolite node. The radial layout was adopted for the reactions of 

interest focusing on a gene node. 

The rendering stage includes two sub-stages, visual representation and rendering 

control. In the visual representation sub-stage, geometric objects are constructed for 

nodes and edges. The shapes and material properties of geometric objects, such as colors, 

transparencies, and textures, are used to reveal biological properties of nodes and edges, 

such as names and types. In the hierarchical visualization, the spatial inclusion of 

molecule nodes within the cluster nodes like pathway nodes or compartment nodes in 3D 

space reflects the hierarchical relationships. The transparency of the cluster nodes make it 

easy to perceive the molecule nodes inside. Multiple computer graphics techniques are 

used to increase the rendering performance and quality, including level of detail, 

billboarding, and mipmapping. In the rendering control sub-stage, the user can move the 

viewpoint, move the network and move the reactions of interest using head tracking 

devices and tracked input devices. The user can also turn on or off different part of the 

network. The detail-on-demand interactions in the hierarchical visualization happen in 

this sub-stage to expand or shrink cluster nodes. The users can also enable animations like 

color morphing, shape morphing, and edge vibration according to the gene expression 

profiling data, which presenting the dynamic behaviors of the metabolic network. 

A pilot usability study was conducted to investigate the applicability of 3D space, 

computer graphics, and virtual reality for metabolic network visualization. A qualitative 

comparison between 3D space and 2D space for visualizing metabolic networks was 

presented. The pilot usability study and the qualitative comparison suggest that the 

combination of 3D space, computer graphics and virtual reality has the potential for large 

scale metabolic network visualization. A qualitative comparison between the 
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nonhierarchical visualization and the hierarchical visualization was also presented. It 

shows that the hierarchical layout and detail-on-demand methods can increase the amount 

of the perceivable content in a fixed display size. 

8.2 Future work 

The perception of abstract information visualization is subjective. Different users 

have different criteria. More functions will increase the overall satisfactions of different 

users. Future work for effective metabolic network visualization can be done in the 

following directions. 

• Exploit two kinds of hierarchical relationships at the same time. Currently a single 

hierarchical relationship is represented using the 3D spatial inclusion. A future 

work can be a method to superimpose the other hierarchical relationship on this 

representation. The combination of two hierarchical relationships may make the 

whole network more organized and easier to perceive. 

• Layout algorithms should take gene expression profiling data and other biological 

data into consideration. It is very often to compare expressions of multiple genes 

in the context of their connections. Current method is to pull out the reactions of 

interest focusing one multiple genes and look at the change of expressions using 

color morphing, shape morphing or edge vibration. A potential method is to take 

gene expression data into consideration in the calculation of node positions for the 

whole network. With such a layout, comparing all genes in a network in the 

context of their connections may be possible. 

• Combine the abstract information visualization with the scientific visualization. 

For example, the network is displayed in a digital model of a cell; nodes and edges 

are located in sub-cellular compartments in the cell model. The layout algorithm 

will be constrained by the shapes and locations of the sub-cellular compartment 
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models in the cell. The combination can generate vivid rendering effects, which 

may improve the perception. 

Another important effort is a formal usability test of MetNetVR. The pilot usability 

test suggests that the 3D space, computer graphics, and virtual reality may have the 

advantage over 2D space and the flowchart-like display for metabolic network 

visualization. The formal test needs to quantitatively compare MetNetVR with a 2D 

visualization system of similar functionalities. Time for each task is one of the 

comparable quantities. The best configuration of VR needs to be decided. The 

decision should be made between large scale virtual environment like CAVE and 

desktop virtual environment. The former has the best effect and the latter is suitable 

for widespread and daily usage. There should be a tradeoff between the stereoscopic 

display of the network and the monoscopic display of MetNetVR Tweek. Decisions 

should also be made for the option of head tracking for the desktop VR. 
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APPENDIX A. COMPOUND LAYOUT ALGORITHMS 

Below are the pseudo codes of the layout algorithm for the compound graph {G(N, 
E), T(Nt, Et)} described in Section 4.3. Each node contains the following information, 

• Position. Indicating the current node position. 
• Impulse. Indicating the last impulse applied on the node. An impulse applied 

on a node include the brown motion of the node, gravity of the node towards 
the bary center of the current layout, repulsive forces from all other nodes, 
attractions of its adjacency edges in G(N, E), and attractions of its inclusion 
edges in T(Nt, Et). 

• Local temperature. Indicating the current node temperature. The temperature 
is used to scale the impulse applied on the node in order to accelerate the 
convergence towards an equilibrium state. 

• Direction. Used to detect rotation (see the comments in the algorithm) 
Besides the parameters for the function compoundLayout(), the following 

variables are accessible through the functions below. 

edgeLen /* Ideal edge length. */ 
minEdgeLen /* Minimum length */ 
curTemp /* Current global temperature */ 
stopTemp /* Temperature for convergence */ 
stopRound /* Number of rounds to force exit */ 
impulse /* Currently calculated impulse. It is a 3D vector */ 
sum /* Sum of positions of all nodes. It is used to calculate the bary center of the current 
layout. It is a 3D vector */ 

compoundLayout(G(N, E), T(Nt, Et), nodeDim, ki, k2, k3, k^, k5, kg) 
/* nodeDim is the maximum dimension of all nodes, k, is a constant to control stopTemp, 

0<k i< 1. k.2 is a constant to control stopRound, ki>=l. k3 is the weight factor for 
gravitation forces. k4 is the weight factor for the attractions of edges in G(N. E) whose 
ending nodes belongs to the same compartment/pathway. k5 is the weight factor for the 
attractions of edges in G(N. E) whose ending nodes belongs to different 
compartments/pathwavs. k (1  is the scale factor for the attractions of edges in T(N t, E t)*/ 

{ 
init(); 
round=0; 
while ( (curTemp > stopTemp) and (round < stopRound) ) 
{ 

for ( i = 0; i < size(Nt); i ++) 
{ 

randomly choose a node, n, from Nt; 
impulse = (0, 0, 0); 
brownMotion(); 
gravity(n); 
nodeRepulsion(n); 
clusterRepulsion(n); 
adjacency Attraction(n); 
hierarchy Attraction(n); 
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update(n); 
} 
round ++; 

} 

init() 
{ 

factor = max (1, (size(E) + size(Et)) / size(Nt) ); /* Ideal edge length is dependent on the 
density of edges and at least the same as the maximum dimension of all nodes */ 

edgeLen = factor * nodeDim; 
minEdge = nodeDim; /* Minimal edge length is the same as the maximum dimension of 

all nodes */ 
scale - size(Nt)1/3 * edgeLen / 2; 
for each node neN 
{ 

n.temp = edgeLen; /* The initial local temperature */ 
n.impulse = (0,0,0) /* The initial impulse*/ 
n.dir = (0,0,0) 
n.position = (x, y, z) /* The initial position, x, y, and z are the random numbers 

between -scale and +scale */ 
} 
for each node neNt-N 
{ 

n.temp = edgeLen; /* The initial local temperature */ 
n.impulse = (0,0,0) /* The initial impulse*/ 
n.dir = (0,0,0) 
n.position = bary center of n's children in T(Nt, Et) 

} 
curTemp = edgeLen * size(Nt) 
stopTemp = ki * curTemp; /* k, is a constant to control stopTemp, 0<k|<l */ 
stopRound = ka * size(N t); /* k2 is a constant to control stopRound. k]>=l */ 
sum = ^n.position 

«AT, 

brownMotionQ 

impulse += (x,y,z); /* x.y,z are random number between -edgeLen/2 and edgeLen/2 */ 

gravity(n) 

center = sum/size(Nt); /* center is the center of the current layout */ 
impulse += (center - n.position) * k3 /* k ; is the weight factor for gravitation forces. */ 

nodeRepulsion(n) 
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{ 
if (neN) 
{ 

for each node i e N, 
{ 

if (i != n) 
{ 

A = i.position - n.position; /* A is the vector from the current position of i to the 
current position of n */ 

if ( | A | > 0 ) /* |  A |  is the length of the vector */ 
impulse += A/ | À | * edgeLen; 

} 
} 
} 
} 

clusterRepulsion(n) 
{ 

if (neNt-N) 
{ 

for each node i G  Nt-N, 
{ 

if (i !=n) 
{ 

A = i.position - n.position; /* A is the vector from the current position of i to the 
current position of n */ 

length 1 = longest distance of n to its children in T(Nt, EJ 
length! = longest distance of i to its children in T(Nt, Et) 
length = length 1 + lengh2 
if ( |  A | < length ) /* |  A |  is the length of the vector */ 

impulse += A/ | A | * length; 
} 
} 
} 
} 

adjacencyAttraction(n) /* Attractions of adjacency edges of n in G(N, E) */ 
{ 

for each edge of n, e , e e E in G(N,E) 
{ 

A = j.position - n.position; //j is the other node of e 
if ( | A | > minEdgeLen) 
{ 

//Calculate the negative impulse pnj, between n and j, the other end of e 
A x= |  A | /edgeLen * O(n) /* ®(n) is a function that grows with the degree of n. */ 
if (parent(n) == parent® ) /* parent(n) is a function return the parent node of a 

molecule node n in tree T(N t, E t)*/ 
A x= 1<4; /* k4 is the weight factor for the attractions of edges in G(N. E) whose 

ending nodes belongs to the same compartment/pathway */ 
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else 
A x= ks /* k5 is the weight factor for the attractions of edges in G(N, E) whose 

ending nodes belongs to different compartments/pathways. */ 
impulse -= A; 

} 
} // for 

hierarchyAlttraction(n) 
{ 

for each edge of n, e, e e Et in T(Nt, Et) 
{ 

A =j.position - n.position; /* j is the other node of e */ 
A *= ké * |  A | /edgeLen * O(n) /* kh is the scale factor for the attractions of edges 

in T(Nt, Et). <D(n) is a function that grows with the degree of n. */ 
impulse -= A; 

} 
} 

update(n) 

if ( | impluse | > 0) 
{ 

temp = n.temp; 
impulse *= temp/ | impluse | /* scale the impulse with current temperature*/ 
n.position += impulse /* position update */ 
sum += impulse /* update for the calculation of the bary center of the layout */ 
if ( | n.impulse | > 0) /* n.impulse is the last impulse recorded*/ 
{ 

a = the angle between impulse and n.impulse /* compare the direction of last 
impulse and the current impulse */ 

/* Oscillation or acceleration happens when the last impulse and the current one are 
parallel*/ 
if ( | cos a | > cos a0 ) //a0 is the opening angle for oscillation detection. a„ e [0, tc/4] 
{ 

/* Oscillation happens if cos a < 0, i.e. the last impulse and the current one are in 
the opposite direction. Decrease the temperature to depress the oscillation. In 
crease the temperature to accerelate if cos a > 0, i.e. two impulses have the same 
direction*/ 

temp += G 0 * cos a /* a0 is the sensitivity towards oscillation o„ >=l */ 
} 

/* Rotation may happens when the last impulse and the current one are orthogonal*/ 
if ( | cos a | < cos ar ) //a, is the opening angle for rotation detection, ar e [0, ti/2] 
{ 

n.dir += ( 
or * sign(n.impulse.x * impulse.y - n.impulse.y * impulse.x), 
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/* o r  is the sensitivity towards oscillation o, 6(0.1 j. sign(x) is a function that 
returns 1 when x >=0 and -1 when x <0. Sign() return different values when 
the angle between the projections of n.impulse and impulse in XY plane has 
different signs. The absolute value of each element of n.dir will increase if the 
angle always has the same sign. */' 

or * sign(n.impulse.y * impulse.z - n.impulse./ * impulse.y), 
or * sign(n.impulse.z * impulse.x - n.impulse.x * impulse.z) 

} 

/* Scale down the temperature to depress rotation. The more |  n.dir.x |. |  n.dir.x |, 
or |  n.dir.x |  approachs 1, the more unbalance the node is, i.e. a rotation happens. 
Decrease the temperature to depress the rotation */ 

temp *= ((1 -1 n.dir.x | ) *(1 - | n.dir.y | ) *(1 - | n.dir.z | ) )1/3 

/* Update current global temperature */ 
curTemp -= n.temp; 
curTemp += temp; 
/* Update the current temperature of the node*/ 
n.temp = temp; 

} 
n.impulse = impulse /* record the current impulse */ 

} 
} 
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APPENDIX B. FAN LAYOUT ALGORITHMS 

Below are the pseudo codes of the fan layout algorithm described in Section 5.1. 

fanLayout(/ôczti_HOûfe) 
{ 

/* Generate multiple copies for each other node than focus node if it takes part in 
multiple ones of the reactions that focus node takes part in. */ 

split (focus _node); 
/* Lay out reactions one by one. */ 
num = the number of reactions that focusjiode takes part in; 
halfjium = floor(«wm-r2); /* the function floor is to round down value *1 
i = 0; 
for each reaction r that focus _node takes part in 
{ 

/* Lay out reaction r, let the position oÏ reaction node to be (0. 0, 0). */ 
reactionLayout(r); 
/* Translate focus_node along the -X axis with the distance of offset to avoid 

potential overlap of nodes in different reactions (Figure B.l(b)). */ 
focus jiode.position.x - focus node.position.x - offset, 
/* Translate the layout of reaction r, let the position of focus jiode to be (0, 0, 0). 

*/  

for each node n that belongs to r 
n.position = n.position - focus node.position', 

/* Rotate the layout of reaction r so that all reactions are evenly located in 3D 
space around focus node (Figure B.I (a)) */ 

if (i < half_num) 
Rotate the layout of reaction r along the Y axis with the degree of 360-^ 
halfjium xi; 

else 
{ 

Rotate the layout of reaction r along the X axis with the degree of 180; 
Rotate the layout of reaction r along the Y axis with the degree of 360-K num-
halfjium) x(z— halfjium); 

} 
} 

} 

sp\it(focus_node) 
{ 

for each pair (i, j) of the reactions that focus node takes parts in 
{ 

/* Find the common nodes that reaction i and reaction / have. i.nodes and j.nodes 
are sets of all nodes in reaction i and reaction j respectively. */ 

0 = i. nodes n j. nodes ; 
/* Generate another copy for each common node except focus node. */ 
for each ne 0 
{ 
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if (n — focus jiodé) continue; 
make ri, a copy of n; /* Split n */ 
substitute ri for n in reaction j; 

} 

} 

} 

reactionLayout(r) 
{ 

reaction jiode.position = (0, 0, 0); 
lay out the tree rooted at reaction_node; 
calculate aright)l /* (%/c/,. «,-,«/») is the pie-shape boundary of the tree (Figure B.l 

(b))*/ 
/* For each metabolite node, decide whether to draw it at the left side of 

reaction node or at the right side. The focus node is always at the left side. <Z>/d, is 
the set of nodes to be drawn at the left side. (£>„<,/« is the set of nodes to be drawn at 
the right side. */ 

if {focus jiode is a substrate of reaction r) 
{ 

(Pieft = the set of all substrates of reaction r; 
bright = the set of all products of reaction r; 

} 
else /* focus jiode is a product of reaction r */ 
{ 

0ief, = the set of all products of reaction r; 
bright = the set of all substrates of reaction r; 

} 
/* Lay out the nodes at the left side of reaction node. Make sure that edges between 

any of these nodes and reaction node will not intersect the pie-shape boundary 
I'^/r//. ttrighl)' */ 

maxHeight = unitHeight x (&icft.size -1)4-2; /* unit Height is a constant distance */ 
x = maxHeight + tag ( a / e / r  -  S ); /* à is a small constant angle. */ 
/= 1; 

for each ne G\ft 

{ 
if (n — focus jiode ) 

n.position = (x, -maxHeight, 0); 
else 
{ 

n.position = (x, -maxHeight + unitHeight x i, 0); 
/++; 

} 
} 
/* Lay out the nodes at the right side of reaction node. Make sure that edges 

between any of these nodes and reaction node will not intersect the pie-shape 
boundary (<%,,, «,,<,/„)• */ 

maxHeight = unitHeight x (<Pright.size - 1)^2; 
x = maxHeight + tag(arighi - S ); 
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i - 0; 
for each ne <Pr>ght 
{ 

n.position = (x, -maxHeight + unitHeight x i, 0); 
i++; 

} 

:Height maxa 

focus jiode reaction node 

(b) (a) 

Figure B.l (a) An illustration of a fan layout of reactions of interest focusing on node 'A' 

(b) An illustration of how to draw a reaction 
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APPENDIX C. RADIAL LAYOUT ALGORITHMS 

Below are the pseudo codes of the fan layout algorithm described in Section 5.2. 

RadialLayoutfgewewoûfe) 
{ 

for each reaction r that gene_node takes part in 
{ 

/* Lay out reaction r using any one of metabolites in r as focus node, let the 
position of reaction nude to be (0. 0, 0). */ 

reactionLayout(r). 
/* Translate the layout of reaction r, let the position of gene node to be (0, 0, 0). 

*/ 

for each node n that belongs to r 
n.position = n.position - gene jiode.position', 

calculate (ar,ieft, o-r,right); /* («,->/,. rx,.,,g/») is the pie-shape boundary of the layout 
(Figure C. 1(b)) */ 
OLr — Iliax(«,. 0.r right)-

k = 2xn / Z r (ar); 
for each reaction r that gene_node takes part in 
{ 

/* Scale the Y positions of all nodes in r so that angular sum of all reactions is 2n 
(Figure C. 1(b)). */ 

H' = Wr/tan(kx ar); 
S = H' r /Hr, 

for each node n that belongs to r 
n.position.y = n.position.y x s; 

Rr = abs {reaction jiode.position.y)', 

} 
R = maxr(Rr); /* R is the radius for the final radial layout; */ 
a = 0; 
i = 0; 
for each reaction r that genejiode takes part in 
{ 

/* Scale the X and Y positions of all nodes in r so that all reactions has the same 
radius R */ 

s = R/Rr; 
for each node n that belongs to r 
{ 

n.position.x = n.position.x x s; 
n.position.y = n.position.y x s; 

} 

/* Rotate /• around gene node so that the reaction nodes for all reactions on the 
circle around genejiode */ 

if ( i > 0) a = a+ a/2; 
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rotate r around genenode with the degree of a; 
a = a+ a/2; 
i ++; 

genenode 

O 

(b) (a) 

Figure C.l (a) An illustration of radial layout, (b) An illustration of how to scale the Y 

position so as to narrow down the boundary angle of a reaction. 
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